
Evasion-Resistant Malware Signature Based on

Profiling Kernel Data Structure Objects

Ahmed F.Shosha*, Chen-Ching Liu,

Pavel Gladyshev*

 * School of Computer Science and Informatics,

School of Electrical, Electronics and Communication

Engineering.

University College Dublin.

Ahmed.Shosha@ucdconnect.ie

{Liu, Pavel.Gladyshev}@ucd.ie

Marcus Matten

Avira Research Department,

Avira Operations GmbH& Co. KG.

Marcus.Matten@avira.com

)

Abstract— Malware authors attempt in an endless effort to find

new methods to evade the malware detection engines. A popular

method is the use of obfuscation technologies that change the

syntax of malicious code while preserving the execution

semantics. This leads to the evasion of signatures that are built

based on the code syntax. In this paper, we propose a novel

approach to develop an evasion-resistant malware signature.

This signature is based on the malware’s execution profiles

extracted from kernel data structure objects and neither uses

malicious code syntax specific information code execution flow

information. Thus, proposed signature is more resistant to

obfuscation methods and resilient in detecting malicious code

variants. To evaluate the effectiveness of the proposed approach,

a prototype signature generation tool called SigGENE is

developed. The effectiveness of signatures generated by SigGENE

evaluated using an experimental root kit-simulation tool that

employs techniques commonly found in rootkits. This simulation-

tool is obfuscated using several different methods. In further

experiments, real-world malware samples that have different

variants with the same behavior used to verify the real-world

applicability of the approach. The experiments show that the

proposed approach is effective, not only in generating a signature

that detects the malware and its variants and defeats different

obfuscation methods, but also, in producing an execution profiles

that can be used to characterize different malicious attacks.

Keywords: Malware Behavior Profiling, Malware Signature,

Signature-Based Detection, Kernel Data Structure.

I. INTRODUCTION

Traditional signature-based detection is one of the most

popular approaches to detect known malware in the anti-virus

(AV) industry. It relies on extracting sequences of bytes from

malicious code binaries that form a signature used to detect it.

Unfortunately, advances in malware development have led to

a variety of methods to evade malware detection signatures

that rely on byte sequence pattern matching.

A prevalent feature that is commonly used in modern

malware to bypass signature-based engines is employing code

obfuscation and packing technology [1, 2]. The term

obfuscation describes the process of intentional tampering and

manipulation of the malicious code syntax while preserving

the malicious behavior semantics. Practically, packing, code

re-ordering and junk code insertions are the most commonly

used methods to subvert and evade signature-based detection

engines [3, 4]. Further obfuscation methods include API

obfuscation, in which unnecessary API calls are inserted in

malicious binaries to impede malicious code analysis process

and encounter code emulation [2]. Unfortunately, employing

these methods in malware code, not only, hinder malware

analysis and malware forensic investigation, but also, various

malicious code variant programs can easily be generated.

These malicious programs are capable of executing the

original malicious payload, while being transparent to the

original detection signatures.

In essence, the intent of these obfuscation methods is to

subvert features input used in signature development process.

As a result, created signatures will be ineffective in detecting

obfuscated malicious code. Particularly, signatures developed

based on features prone to manipulation and obfuscation cause

signature detection failures, whereas signatures developed

based on features sensitive to tampering are resistant to

obfuscation methods and evasions techniques.

In this paper, a novel method is proposed to develop an

evasion-resistant malware signature based on features that are

sensitive to tampering and robust in detecting malware

behavior. In the proposed approach, the characteristics of

operating system kernel data structure objects [5] are used to

develop malware signature instead of traditional signature that

relies on byte sequence matching.

The operating system kernel manages several data structure

objects that describe and manage the operations of the

programs being executed. The syntax and semantic of such

data structure objects are defined by the operating system

code. Tampering or modifying these kernel objects properties

while programs are being executed can cause the operating

system to crash or produces unpredictable behaviors.

Furthermore, kernel objects are considered to be an analogous

representation of code executed in the operating system

kernel. Therefore, characteristics of kernel objects’ features

are a potential source for deriving evasion-resistant malware

signatures.

The key idea of the proposed approach is to profile the

invariant values of the kernel objects’ features that represent

malicious code execution during malware dynamic analysis

process in a controlled profiling environment. Profiled

features, then, will be used to derive a robust malware

detection signature.

The process of features profiling is based on monitoring the

malware information flow at different execution states, i.e.

system call invocations. In each monitored execution state,

there exists a unique pattern of features’ values in the kernel

objects that characterize malware behaviors and values of

these features uniquely describe the semantics of the malicious

code execution state. As such, by aggregating all the values of

kernel object’s features that are profiled during the malicious

code execution process, we can detect invariants that precisely

represent the malware execution. These invariants are, then,

used to develop a unique malware signature that is robust,

sensitive to manipulation, and can detect malware variants and

obfuscated malware samples.

In this work, malware signature is developed based on

profiling EPROCESS, a dynamic kernel object that is used to

represent a running process in Windows operating systems.

However, the proposed approach can easily be extended to

profile other kernel objects types that represent various aspects

of the program behavior. We monitor the dynamic changes to

the EPROCESS object related to a malware in memory while

malware’s code is being executed. Thereafter, an invariant

identification technique called “data structure invariant

detection” [7] is utilized to aggregate the profiled EPROCESS

object throughout different execution states and determine

invariants values from profiled object’s features. Determined

invariants describe different properties of monitored object

that hold over the life time of malware execution. An invariant

in profiled EPROCESS object can, for example, be a specific

value of a security Token that represents control access to a

process object. Further, invariant can be a specific value of

EPROCESS Flags that represent process execution flags.

To evaluate the proposed approach, we implemented a

prototype malware signature generation tool called SigGENE.

The tool profiles values of EPROCESS kernel object features

in a dynamic analysis environment [6]. This involves hooking

the operating system API call table [8, 9] and building a

custom kernel device driver in order to capture dynamic

changes to EPROCESS features in the profiling phase.

In the experimentation phase, we developed detection

signatures for several real-world malware variants that belong

to five different malware samples families and obfuscated

using different techniques. In addition, we evaluated the

proposed approach on our developed kernel-mode rootkit-

simulation program that features user-space process hiding.

Developed rootkit-simulator has been obfuscated using three

different techniques to verify the effectiveness of the

generated signature in defeating different obfuscation

methods. A number of the test malware variants effectively

evade two different AV scanners that could not detect all

malware variants. However, the proposed approach

successfully detected all obfuscated variants in both real and

simulated malicious samples. We further analyzed profiled

data of kernel objects for each malware sample at each

execution state, we argue that each profiled kernel object

maintains a unique pattern of data traces that describe and

determine the state currently being executed. Thus, by

utilizing this observation, forensic identification of previously

executed system calls is likely to be possible.

At last, we state the contributions of this paper as follow:

 An approach is proposed to develop a robust

malware detection signature based on detected

kernel data structure invariants that is evasion-

resistant to obfuscation techniques.

 This approach automates the process of malware

signature generation based on profiling kernel data

structure objects monitored during the malware

execution process.

 A prototype malware signature generation tool is

implemented to automate development of malware

signatures through dynamic analysis and profiling of

dynamic kernel data structure objects.

The remainder of the paper is organized as follows: In

section two, the system architecture of SigGENE is described.

Section three presents the evaluation of the proposed approach.

In section four, a brief discussion of the proposed approach is

provided. In section five, we discuss the related work. Finally,

section six concludes the proposed approach.

II. SYSTEM OVERVIEW

In this section, the proposed malicious kernel objects profiling

approach is presented and assisted with the design and

implementation of SigGENE. SigGENE is a prototype

malware signature generation engine that profiles malicious

kernel objects for executed malware sample and determines

invariant kernel objects’ features values during malicious code

execution. To perform malware behavior profiling, SigGENE

monitors the kernel objects that belong to the malicious code

in memory throughout utilizing a Virtual Machine Monitoring

and Introspection (VMI) techniques [10]. Fundamentally,

VMI employment in the proposed approach allows in

monitoring the dynamic changes to the kernel objects’ features

and forms the basis for profiling malicious code behavior and

monitoring malware execution. An overview of SigGENE

system design is depicted in Figure 1.

The design model of SigGENE is comprised of two

complementary modules. The first module is designated to: 1)

Identify features in kernel objects that effectively contribute to

robust signatures development. 2) Monitor dynamic changes

to kernel object features in the context of malicious code

execution and develop kernel objects’ profiles. The module

functionalities are implemented in Virtual Machine Monitor

(VMM) and Kernel Object Profiler components in Fig 1. The

inputs to previously mentioned components are definitions to

kernel objects data structure as defined in the guest operating

system code and locations of the kernel objects instances in

the guest OS memory. The second module utilizes developed

kernel object profiles during dynamic monitoring and

introspection of malicious code execution and determines

invariants values over kernel object’s features to generate the

evasion-resistant malware signature.

A. Robust Features Identification

Robust features are properties in monitored malicious

kernel objects that effectively contribute to the execution of

malicious code and assist in producing evasion-resistant

detection signature. Identifying robust features is the core

component in the proposed signature development approach.

Since numerous features may be considered as viable

candidates to the signature development process, only a

limited number of features are effectively contribute to robust

signature development. For example, EPROCESS kernel

object and its substructure objects hold up to 2000 features

based on the OS version [11]. Some of these features are

unused or used in specific circumstances and others are prone

to manipulation by malicious code. That is, unused features or

features prone to manipulation threat the signature integrity

and assist in producing signatures that can be evaded if an

appropriate evasion technique employed. Thus, locating

features in kernel objects that allow in robust signature

development is an inevitable portion of the proposed

approach.

In our implementation, a derivate of dynamic monitoring of

kernel data structures using Virtual Machine Introspection

(VMI) technique proposed in [5] has been used to identify

robust features in the kernel objects. The key idea of the

robust feature identification process is based on how important

these features are to malicious code execution. Features that

are accessed or modified while malware is being executed are

more likely to be relevant to the malicious code execution,

relative to features that are never accessed. Similarly, features

that, if modified, will cause malware to misbehave, are more

likely to have a strong relevancy to malicious code execution,

than features, if changed, do not alter malware behavior.

To identify robust features in EPROCESS kernel object

that used in signature development process, we developed a

dynamic monitoring component for EPROCESS kernel object

features using (VMI) to identify whether EPROCESS’s

features have been accessed or modified during malware

execution process. We have customized a version of QEMU

emulator [12], a fast processor emulator using dynamic code

translation, to implement a kernel object memory monitoring.

We instruct the customized QEMU to create an Event Traces

for memory reads and writes routines that are part of the

Virtual Machine Monitor (VMM) component shown in Figure

1. Event tracer allows tracing dynamic changes on kernel

object features through monitoring memory Reads and Writes

operations over memory regions allocated to the kernel

object’s features. Thus, if a memory region represents a

malicious code kernel object is accessed or modified, an event

is triggered to describe the offset of the memory region and

the operation used to access the offsets. These logs are

examined later and mapped to the definition of the

EPROCESS kernel data structure to determine what features

were accessed or modified and how often. Based on the results

of tracing dynamic changes to memory regions allocated to

kernel objects’ features, VMI event tracer determines robust

features per malware sample that will be considered in the

profiling process and will contribute in producing an evasion-

resistant malware detection signature.

B. Malicious Kernel Objects Profiling

In the profiling process, we profile kernel object features

during malicious code execution. These profiles primarily

describe the characteristics of monitored malicious kernel

objects’ features that are analogous to malware execution

semantics in different execution states.

Figure 1: System Overview

Figure 2: Kernel Object Profiling During Malicious Code

Execution

This process encompasses the execution of malicious code

binaries in a controlled environment [13-16] to identify the

malicious code information flow and executed system calls

(syscalls). Since system calls are the main interface for

programs to interact with the operating system kernel, we use

system calls invocation procedure as a trigger for the profiling

procedure. Unlike other systems that model malware behavior

by specifying system calls execution sequences, we only use

system calls invocation to trigger the process of profiling

identified robust features in kernel objects. Unfortunately,

systems relying on malware behavior profiling based on, only,

system calls sequences are prone to different attacks such as

insertion of irrelevant calls or call sequence re-ordering [17].

Thus, to avoid such shortcoming, the proposed profiling

process solely consider system calls invocations as an initiate

to an execution state with no regards to the calls execution

sequence.

In this research, we defined a formalism to describe the

process of kernel objects profiling in the context of malicious

program execution. Malicious code control flow is represented

in a finite state automata [17] model that describes the

malicious program behavior, where each state is labeled with a

system call used by malware code to interact with the

operating system kernel and edges are transitions that

represent the dynamic control flow and determine the

dependencies between states.

Definition. A malicious code behavior is a

finite sequence of states in S such that and

 with , and L is labeling procedure ,

in which is an atomic proposition that is true at the

execution of the system call syscalls.

In essence, invocation of a system call causes changes to the

control properties of a kernel object O, in which the operating

system kernel changes the object O in way to permit it to

execute . Hence, we define invocation of as a function that

stimulates changing values of various properties (robust

features) { } in malicious kernel object from

{ } into { }, such that, the features

values hold after invocation of uniquely define the

characteristics of robust feature at state s(). The

profiling procedure used to capture changes to at

invocation of is defined as , where the function

 over is defined as .
Finally, the result of robust feature profiling process are

stored in the object snapshots profile repository , such

that, ⟦ 〈 〉 〈 〉 〈 〉⟧ .

Based on the previous discussion, we define a malicious code

profiling process , more formally, as: 〈 〉, such

that:

 is a set of malicious code execution states where

each state labeled with a system call .

 is a profiling procedure that monitor the dynamic

changes to the features of a malicious kernel object

 and capture the characteristics of object

after invocation of .

 is a repository of profiles related to a malicious

kernel object that hold at different system calls

invocations.

Intuitively, the profiling process encodes the characteristics

of malicious kernel object features at system call invocations.

This means extracted profiles will represent malicious code

execution from the kernel object data structure perspective.

These profiles do not include specific information about

malicious code syntax or execution sequence of malicious

system calls. That is, the profiles are less vulnerable to

obfuscation methods and evasion techniques that rely on

manipulating code syntax.

Practically, the process of malicious kernel object profiling

is implemented at the Kernel Object Profiler (KOP) module as

shown in Figure 1. KOP is a set of kernel device drivers that

monitor invocation of the kernel systems calls invoked from

malicious processes in memory throughout system call table

hooking [18, 19]. This includes, monitoring systems calls that

used in different aspects of the malicious programs execution,

such as process and thread creation, malicious DLL loads and

file, registry, network operations. Once malicious system call

is invoked, the locations of the robust features belongs to

malicious kernel object in memory are requested from the

VMM, followed by an acquisition of the robust features’

values from the guest operating system’s memory. Note that,

an assistant procedure defined as a provisional suppression of

malicious code execution after system call invocations until

the acquisitions of the robust features’ values is defined to

allow consistent profiling and protect the features’ values of

being overwritten before the completion of features’ values

acquisition.

Figure 2 depicts an excerpt from a profiled malicious kernel

object while malicious code is being executed. In this graph,

one can see various invoked system calls by the malicious

code to obtain handle of a malicious process and get an access

to the process token to probe a processes-space in memory.

The profiling procedure in KOP is stimulated, once the VMM

notify KOP with a notification routine of invoked system call

and its arguments, to profile a snapshot of kernel objects’

robust features that represent malicious code in memory.

Finally, the profiling procedure adds profiled kernel object

features’ snapshot to the kernel object repository space. This

repository space is a set of profiles representing characteristics

of malicious kernel objects in the context of malware

execution at different system calls invocations.

Note that, the vector length of a profile snapshot is

determined through the robust feature identification process,

as previously explained. For example, the length of a single

snapshot varies from 100 robust features to 500 features.

Similarly, the length of a malicious object repository space is

determined based on the number of invoked system calls by

malicious code.

C. Signature Generation

During malicious kernel object profiling process, numerous

profile snapshots are obtained that uniquely characterize

malicious object at each invoked system call. However, each

profile snapshot represents a timely-specific characteristic of

the malicious code behavior. In other words, it preserves the

malicious kernel data structure characteristics at specific

execution state. Thus, to aggregate obtained profiles and

represent all execution states, an aggregation process is

proposed to assemble the profile snapshots, and detect

invariants features’ values obtained in the profiles acquisition

process. In the profiles aggregation process, we used the

concept of Dynamic Invariant Detection [20]. This concept is

proposed to detect likely invariants in a user space program

execution by instrumenting the source programs to trace

variables of interest through program execution over a set of

test cases. In the proposed approach, we use a simplified

version of a dynamic invariant detector [20], where inputs to

the detector is comprised of obtained profile snapshots from

malicious code profiling process. The profile snapshots are

examined by several test cases using different constraints and

examination templates to detect invariant values of monitored

robust features. An example for a constraint used to detect

invariants in profiled malicious kernel object is a constant

value for a specific robust feature, or a linear relationship

between two features, given that they are present in all

snapshot profiles. Another example is a value for a specific

feature being in a specific range during malicious code

information flow. Consequently, applying invariant detection

process on obtained profile snapshots produces a profile that

represents a unique invariants characteristic of malicious

kernel objects features that holds over the life time of malware

execution.

Finally, produced profile is used as a signature to detect

malware programs throughout scanning the dynamic kernel

objects belong to a malicious executable in memory and

matching characteristics of scanned dynamic kernel object

with produced profiles.

III. EVALUATION

Several test cases performed to evaluate the efficiency of

SigGENE and to prove that produced profiles are resistant to

evasion and obfuscation techniques.

Two different experiments were conducted to evaluate the

proposed approach. In the first experiment, a program

simulating a kernel-mode rootkit is developed to launches a

dynamic kernel object manipulation attack (DKOM) [21] and

hides a different malicious processes running in user-mode.

Additionally, developed rootkit-simulator has been obfuscated

using 3 different methods to determine if generated profile

signature is capable of detecting obfuscated variants. Note

that, used code obfuscation methods were obfuscation by

encryption, code re-ordering and instruction substitution [2].

The result of code obfuscation process was generation of 13

different variants of developed rootkit-simulator. The second

experiment was conducted on real-world malware samples

[22] from different samples families. Each sample family has

up to 17 variants and executes the same functionalities, with a

total number of 63 test samples. All samples have been

scanned with two different AV detectors; the detectors,

however, failed to detect 19 samples variants while developed

profile signatures successfully detected all samples variants

and obfuscated versions of the lab rootkit-simulator.

The signature development process has been verified in

different versions of Windows operating system to evaluate

the kernel object profiling accuracy in different object’s

definitions.

Malicious Kernel Objects’ Profiles Characteristics

Sample
Family 1

Sample
Family 2

Sample
Family 3

Sample
Family 4

Sample
Family 5

Lab

Rootkit-
Simulator

Family

#Average Robust features 253 348 211 283 147 118

#Average Obtained profile snapshots 277 513 293 375 256 188

#Average read operations over robust features 9365 11975 7132 9844 8401 6121

#Average write operations over robust features 2499 3730 1981 2373 1192 958

Signature detection false positives/negatives 0 0 0 0 0 0

Table 1: Malicious Kernel Objects Profiling Results

The profiling process was developed in Windows XP SP3 and

Windows 7 SP1.We observed that identified robust features in

Windows 7 were more comprehensive in describing the

characteristics of malicious kernel object. The vector length

of features included in profiled snapshots was extended since

EPROCESS kernel object definition in Windows 7 is slightly

different compared to previous Windows versions and

contains more flags that controls programs execution.

The results of the experiments, given above in Table 1,

describe and present the outputs of the profiling process for

the test malware samples and developed rootkit-simulator

used in SigGENE evaluation. The robust features results

section presents features that are determined to be used in

kernel object profiling process based on their contribution in

malicious code execution process. Obtained profile snapshots

section shows produced number of profile snapshots upon

invocation of various system calls per malicious code

execution run. As such, malicious code execution run

represents the process of monitoring malicious code execution

starting from the creation of a malicious process until

malicious process termination. Finally, Read and Write

operations over robust features section provides an indication

on how determined features are relevant to the execution of

malicious process and describe the numbers of dynamic

changes of robust features’ values in malicious kernel object

throughout malicious code execution. Note that, presented

numbers is the average of sample evaluation and its variants.

In the verification process, generated profiles used as a

signature were also verified using several benign kernel

objects representing user-mode programs and malicious kernel

objects representing malware samples that were not a part of

test cases, as well. All test cases did not produce false

positives or negatives and generated profiles produced

accurate results in detecting intended samples.

Throughout the profiling process, we analyzed obtained

profile snapshots for each test sample. A core observation was

that each profile snapshot has a unique set of feature values

that uniquely characterize the execution state itself. For

example, while investigating the test lab rootkit-simulator

snapshot profiles, no profile snapshot was identical to other

snapshots and values of at least 20 robust features are unique

compared to other profile snapshots and to other objects

profile spaces. Thus, we argue that we can, not only, develop a

signature to detect malware and its variant based on kernel

object profiles, but also, identify system calls that have been

invoked by malware, if profile snapshots information

employed in malware forensic investigation analysis.

Furthermore, in the profiling process we observed

similarities between profiles extracted while invocation of

system calls belong to same group family, i.e. networking or

memory related system calls. For example, system calls used

to probe or attach to user address space of other processes in

memory such as KeStackAttachProcess [11] changes

the values of Token feature and debug flag to a unique

value that enabled us to determine that a process probe related

system calls have been invoked.

By utilizing these observations, we can characterize malicious

attacks based on similarities of profiles obtained during the

attack execution. For example, in an experiment designated to

analyze three different rootkit samples launching a DKOM

attack, we observed partial similarities between profiles

extracted through execution of system calls related to the

attack. Therefore, we argue that the proposed approach can be

extended to detect unknown samples based on profiling the

characteristics of malicious attacks.

IV. DISCUSSION

SigGENE is a signature-based malware detection approach,

primarily designed to detect obfuscated malware and malware

variants through profiling malicious dynamic kernel objects.

Although signatures developed based on kernel object profiles

demonstrate promising results in the evaluation phase,

SigGENE prototype is confronted with a number of

limitations, which are being addressed in our on-going work.

 Profiling Performance: SigGENE traces memory access

using a VM monitoring module as a basis for the robust

feature identification process. This process is both time-

consuming and computationally expensive in profiling

stage. Thus, our work in-progress includes a lightweight

process memory monitor based on tracing memory page

access on page fault errors from the operating system

memory manager, instead of tracing read and write

operations directly from the VM using Event Tracer.

 Behavior Monitoring: We monitor malware execution by

hooking the operating system calls. However, some anti-

analysis methods employed by malware do detect

monitoring-based hooking. Thus, SigGENE may produce

inaccurate profiles if the sample employs such methods.

To overcome this shortcoming, we are moving the kernel

object profiler and monitor component from the operating

system kernel internals to outside by implementing the

monitoring functionalities in the VM monitoring layer.

This type of monitoring and profiling will as a result be

transparent to malware samples under investigation.

 Kernel Objects: The current scope of the proposed

approach is limited to profile EPROCESS kernel data

structures; one suggested improvement is to include

additional kernel objects such as FILE_OBJECTS and

VAD. We believe that inclusion of different kernel

objects will yield to deeper and unique profiles

generation, which will lead to improve malware behavior

characterization.

 Profiling Samples and Attack: Currently proposed

approach profiles kernel malware samples and its

variants. The evaluation results, however, demonstrated

the possibility of profiling malicious attacks through the

observation of kernel objects while invoking malicious

system calls to perform a specific attack. Thus, our future

work will includes an extension to the proposed approach

to include malicious attacks profiling.

V. RELATED WORK

While signature-based detection has been studied for

decades, malware detection based on behavioral profiling and

defeating code obfuscation has become increasingly important

in recent years. Various approaches have been proposed to

characterize malware behaviors based on code execution flow

[23-25]. However, such approaches were confronted with

different obfuscation methods that elude malware analysis and

traditional signature-based detectors.

Panorama proposed a malicious code information tracking

approach using taint-based information flow method to

understand how data can be manipulated by the malicious

code. However, this approach suffered from control flow

evasion attacks that break a taint-based information flow

method [26], hence, Panorama’s detection engine will not be

able to detect variants employing this evasion method.

Similarly, K-Tracer proposed a backward-forward slicing

techniques on simulated kernel event traces to extract malware

goals and functionalities [27]. However the proposed method

requires prior determination of the data on which to perform

the slicing operation. Another approach that profiles malware

behavior was PoKer [28] which proposed a context tracking

method to trace rootkit execution and extract a behavioral

profile based on these execution traces. Although the approach

can effectively profile different rootkit behaviors, extracted

profile is, unfortunately, based on execution syntax and

vulnerable to obfuscation methods.

An improved method to profile rootkit behavior was

proposed in [29]. DataGene proposed a memory data access

pattern extraction approach to characterize the malware

behavior. The main motivation behind DataGene was to avoid

dependence on control flow execution to develop behavioral

profiles. Thus, DataGene proposed a monitoring mechanism

to access patterns of data resident in memory that belongs to

the malicious code and extract unique access patterns that

characterize malware execution. The limitation of this

approach is that data access pattern is subject to the execution

constraints and its environmental parameters, and hence it is

not robust enough to be used as a malware signature. A similar

profiling approach based on data access patterns was proposed

in [30]. KILMAX correlates memory write patterns to normal

distribution of user-issued key stokes to profile and detect

key-logger malware.

Perhaps the most research work relevant to the proposed

approach was presented in [31]. Gibraltar by Baliga et al. takes

advantage of data structure invariant inferences by generating a

graph of kernel objects in memory and, then, derives

constraints over the object data. Observed deviations from the

inferred invariants are considered attacks against the kernel

data structure. In essence, the goal and a number of limitations

that were discovered in Gibraltar make our approach and our

implementation substantially different. Whereas Gibraltar

profiles attacks to be able detect it, our approach profiles

malware semantics to produce a robust detection signature and

defeat obfuscation methods. Additionally, Gibraltar fetches the

kernel data structure from the memory without filtering kernel

object features based on relevance to the attack semantics.

Consequently, a number of unnecessary features will be

included in behavior profiling which is an issue regarding the

precision of the generated profiles.

VI. CONCLUSION

Traditional signature based detection techniques can be

bypassed using malicious code obfuscation or packing, since

features used in signature development are vulnerable to

manipulation and tampering by malicious code.

In this research paper, we propose a novel method to

develop a malware signature that is resistant to obfuscation

techniques. The proposed signature is based on kernel object

characteristics while avoiding dependency on specific

malicious code information that may utilize to evade

developed signatures. In addition, a method is proposed to

identify kernel object’s features that effectively contribute to

the development of a robust malware detection signature.

Kernel object profiling and an invariant detection method are,

also, proposed to assist the process of evasion-resistant

signature development.

To support the proposed approach, a prototype tool is

developed to produce malware detection signatures based on

obtained profiles. Experiments using real-world obfuscated

malware samples show the effectiveness of developed

signatures in detecting malware variants and obfuscated

malicious code.

ACKNOWLEDGMENT

The authors would like to thank Avira’s GmbH research

department and detection engine team for their useful ideas,

advices and contribution in this research. We would also like to

thank our anonymous reviewer for their useful comments and

suggestions. The authors would like to acknowledge support

from EU FP7 project, "A Framework for Electrical Power

Systems Vulnerability Identification, Defence and Restoration

(AFTER)," at University College Dublin.

This research work is a part of on-going effort to produce a

novel computational methods and detection engine to detect

targeted malware intrusions to the software infrastructure of

physical security systems.

REFERENCES

[1] Guo, F., P. Ferrie, and T. Chiueh, “A Study of the Packer

Problem and Its Solutions”, In 11th International

Symposium on Recent Advances in Intrusion Detection,

2008, p. 98-115.

[2] You, I. and K. Yim, “Malware Obfuscation Techniques: A

Brief Survey”, In International Conference on Broadband,

Wireless Computing, Communication and Applications,

2010, IEEE Computer Society. p. 297-300.

[3] Sharif, M., et al. “Impeding Malware Analysis Using

Conditional Code Obfuscation”. In Network and

Distributed System Security Symposium, 2008.

[4] Yan, W., Z. Zhang, and N. Ansari, “Revealing Packed

Malware”, In IEEE Security and Privacy, 2008, p. 65-69.

[5] Dolan-Gavitt, B., et al., “Robust Signatures for Kernel Data

Structures”, In 16th ACM Conference on Computer and

Communications Security, 2009, p. 566-577.

[6] Egele, M., et al., “A Survey on Automated Dynamic

Malware-Analysis Techniques and Tools”, ACM Comput.

Surv., 2008. Vol 44(2): p. 1-42.

[7] Ernst, M., et al., “Quickly Detecting Relevant Program

Invariants”, In 22nd International Conference on Software

Engineering, 2000, p. 449-458.

[8] Mutz, D., et al., “Anomalous System Call Detection”, In

ACM Trans. Inf. Syst. Secur., 2006.Vol 9(1): p. 61-93.

[9] Forrest, S., S. Hofmeyr, and A. Somayaji, “The Evolution

of System-Call Monitoring”, In Annual Computer Security

Applications Conference, 2008, p. 418-430.

[10] Nance, K., M. Bishop, and B. Hay, “Virtual Machine

Introspection: Observation or Interference?” IEEE Security

and Privacy, 2008. Vol 6(5): p. 32-37.

[11] Microsoft, “System-Defined Data Structures”, 2012 [cited

May 2012]; Available from: http://msdn.microsoft.com/en-

us/library/windows/hardware/ff564540(v=vs.85).aspx.

[12] Bellard, F., “QEMU, A Fast and Portable Dynamic

Translator”, In USENIX, 2005, p. 41-41.

[13] C, W., T. Holz, and F. Freiling, “Toward Automated

Dynamic Malware Analysis Using CWSandbox”. In IEEE

Security and Privacy, 2007. Vol 5(2): p. 32-39.

[14] Dinaburg, A., et al., “Ether: Malware Analysis via

Hardware Virtualization Extensions”, In 15th ACM

conference on Computer and Communications security,

2008, p. 51-62.

[15] Vasudevan, A. and R. Yerraballi, “Cobra: Fine-grained

Malware Analysis using Stealth Localized-executions”, In

IEEE Symposium on Security and Privacy, 2006, p. 264-

279.

[16] Newsome, J. and D. Song, “Dynamic Taint Analysis for

Automatic Detection, Analysis, and Signature Generation

of Exploits on Commodity Software”. In Network and

Distributed System Security Symposium, 2005.

[17] Kolbitsch, C., et al., “Effective and Efficient Malware

Detection at the End Host”, In 18th Conference on

USENIX Security Symposium, 2009, p. 351-366.

[18] Yin, H., Z. Liang, and D. Song, “HookFinder: Identifying

and Understanding Malware Hooking Behaviors”. In

Distributed System Security Symposium, 2008.

[19] Hunt, G. and D. Brubacher, “Detours: Binary Interception

of Win32 Functions”, In 3rd Conference on USENIX

Windows NT Symposium, Vol 3, p. 14-14.

[20] Ernst, M., et al., “The Daikon System for Dynamic

Detection of Likely Invariants”. Sci. Comput. Program.,

2007, Vol 69(1-3): p. 35-45.

[21] Hoglund, G., “Rootkits: Subverting the Windows Kernel”,

2005: Addison-Wesley Professional. 352.

[22] Offensive Computing. [cited May 2012]; Available from:

http://www.offensivecomputing.net/.

[23] Moser, A., C. Kruegel, and E. Kirda, “Exploring Multiple

Execution Paths for Malware Analysis”, In IEEE

Symposium on Security and Privacy, 2007, p. 231-245.

[24] Xuan, C., J. Copeland, and R. Beyah, “Toward Revealing

Kernel Malware Behavior in Virtual Execution

Environments”, In 12th International Symposium on

Recent Advances in Intrusion Detection, 2009, p. 304-325.

[25] Preda, M., “Code Obfuscation and Malware Detection by

Abstract Interpretation”, In Dipartimento di Informatica,

2010.

[26] Yin, H., et al., “Panorama: Capturing System-wide

Information Flow for Malware Detection and Analysis”, In

14th ACM Conference on Computer and Communications

Security, 2007, p. 116-127.

[27] Lanzi, A., M. Sharif, and W. Lee, “K-Tracer: A System for

Extracting Kernel Malware Behavior”, In 16th Annual

Network and Distributed System Security Symposium,

2009.

[28] Riley, R., X. Jiang, and D. Xu, “Multi-aspect Profiling of

Kernel Rootkit Behavior”, In 4th ACM European

Conference on Computer Systems, 2009, p. 47-60.

[29] Rhee, J., Z. Lin, and D. Xu, “Characterizing Kernel

Malware Behavior with Kernel Data Access Patterns”, In

6th ACM Symposium on Information, Computer and

Communications Security, 2011, p. 207-216.

[30] Ortolani, S., C. Giuffrida, and B. Crispo. “KLIMAX:

Profiling Memory Write Patterns to Detect Keystroke-

Harvesting Malware”. In International Symposium on

Recent Advances in Intrusion Detection (RAID 2011).

[31] Baliga, A., V. Ganapathy, and L. Iftode, “Detecting Kernel-

Level Rootkits Using Data Structure Invariants”. In IEEE

Trans. Dependable Secur. Comput., 2011. Vol 8(5): p. 670-

684.

