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Abstract— Malware authors attempt in an endless effort to find 

new methods to evade the malware detection engines. A popular 

method is the use of obfuscation technologies that change the 

syntax of malicious code while preserving the execution 

semantics. This leads to the evasion of signatures that are built 

based on the code syntax. In this paper, we propose a novel 

approach to develop an evasion-resistant malware signature. 

This signature is based on the malware’s execution profiles 

extracted from kernel data structure objects and neither uses 

malicious code syntax specific information code execution flow 

information. Thus, proposed signature is more resistant to 

obfuscation methods and resilient in detecting malicious code 

variants.  To evaluate the effectiveness of the proposed approach, 

a prototype signature generation tool called SigGENE is 

developed. The effectiveness of signatures generated by SigGENE 

evaluated using an experimental root kit-simulation tool that 

employs techniques commonly found in rootkits. This simulation-

tool is obfuscated using several different methods. In further 

experiments, real-world malware samples that have different 

variants with the same behavior used to verify the real-world 

applicability of the approach. The experiments show that the 

proposed approach is effective, not only in generating a signature 

that detects the malware and its variants and defeats different 

obfuscation methods, but also, in producing an execution profiles 

that can be used to characterize different malicious attacks. 

Keywords: Malware Behavior Profiling, Malware Signature, 

Signature-Based Detection, Kernel Data Structure. 

I. INTRODUCTION  

Traditional signature-based detection is one of the most 

popular approaches to detect known malware in the anti-virus 

(AV) industry. It relies on extracting sequences of bytes from 

malicious code binaries that form a signature used to detect it. 

Unfortunately, advances in malware development have led to 

a variety of methods to evade malware detection signatures 

that rely on byte sequence pattern matching.   

A prevalent feature that is commonly used in modern 

malware to bypass signature-based engines is employing code 

obfuscation and packing technology [1, 2]. The term 

obfuscation describes the process of intentional tampering and 

manipulation of the malicious code syntax while preserving 

the malicious behavior semantics. Practically, packing, code 

re-ordering and junk code insertions are the most commonly 

used methods to subvert and evade signature-based detection 

engines [3, 4]. Further obfuscation methods include API 

obfuscation, in which unnecessary API calls are inserted in 

malicious binaries to impede malicious code analysis process 

and encounter code emulation [2].  Unfortunately, employing 

these methods in malware code, not only, hinder malware 

analysis and malware forensic investigation, but also, various 

malicious code variant programs can easily be generated. 

These malicious programs are capable of executing the 

original malicious payload, while being transparent to the 

original detection signatures.  

In essence, the intent of these obfuscation methods is to 

subvert features input used in signature development process. 

As a result, created signatures will be ineffective in detecting 

obfuscated malicious code. Particularly, signatures developed 

based on features prone to manipulation and obfuscation cause 

signature detection failures, whereas signatures developed 

based on features sensitive to tampering are resistant to 

obfuscation methods and evasions techniques. 

In this paper, a novel method is proposed to develop an 

evasion-resistant malware signature based on features that are 

sensitive to tampering and robust in detecting malware 

behavior. In the proposed approach, the characteristics of 

operating system kernel data structure objects [5] are used to 

develop malware signature instead of traditional signature that 

relies on byte sequence matching.     

The operating system kernel manages several data structure 

objects that describe and manage the operations of the 

programs being executed. The syntax and semantic of such 

data structure objects are defined by the operating system 

code. Tampering or modifying these kernel objects properties 

while programs are being executed can cause the operating 

system to crash or produces unpredictable behaviors. 

Furthermore, kernel objects are considered to be an analogous 

representation of code executed in the operating system 

kernel. Therefore, characteristics of kernel objects’ features 

are a potential source for deriving evasion-resistant malware 

signatures. 

 



The key idea of the proposed approach is to profile the 

invariant values of the kernel objects’ features that represent 

malicious code execution during malware dynamic analysis 

process in a controlled profiling environment. Profiled 

features, then, will be used to derive a robust malware 

detection signature.  

The process of features profiling is based on monitoring the 

malware information flow at different execution states, i.e. 

system call invocations. In each monitored execution state, 

there exists a unique pattern of features’ values in the kernel 

objects that characterize malware behaviors and values of 

these features uniquely describe the semantics of the malicious 

code execution state. As such, by aggregating all the values of 

kernel object’s features that are profiled during the malicious 

code execution process, we can detect invariants that precisely 

represent the malware execution.  These invariants are, then, 

used to develop a unique malware signature that is robust, 

sensitive to manipulation, and can detect malware variants and 

obfuscated malware samples.   

In this work, malware signature is developed based on 

profiling EPROCESS, a dynamic kernel object that is used to 

represent a running process in Windows operating systems. 

However, the proposed approach can easily be extended to 

profile other kernel objects types that represent various aspects 

of the program behavior. We monitor the dynamic changes to 

the EPROCESS object related to a malware in memory while 

malware’s code is being executed. Thereafter, an invariant 

identification technique called “data structure invariant 

detection” [7] is utilized to aggregate the profiled EPROCESS 

object throughout different execution states and determine 

invariants values from profiled object’s features. Determined 

invariants describe different properties of monitored object 

that hold over the life time of malware execution. An invariant 

in profiled EPROCESS object can, for example, be a specific 

value of a security Token that represents control access to a 

process object. Further, invariant can be a specific value of 

EPROCESS Flags that represent process execution flags.   

To evaluate the proposed approach, we implemented a 

prototype malware signature generation tool called SigGENE. 

The tool profiles values of EPROCESS kernel object features 

in a dynamic analysis environment [6]. This involves hooking 

the operating system API call table [8, 9] and building a 

custom kernel device driver in order to capture dynamic 

changes to EPROCESS features in the profiling phase.  

In the experimentation phase, we developed detection 

signatures for several real-world malware variants that belong 

to five different malware samples families and obfuscated 

using different techniques. In addition, we evaluated the 

proposed approach on our developed kernel-mode rootkit-

simulation program that features user-space process hiding. 

Developed rootkit-simulator has been obfuscated using three 

different techniques to verify the effectiveness of the 

generated signature in defeating different obfuscation 

methods. A number of the test malware variants effectively 

evade two different AV scanners that could not detect all 

malware variants. However, the proposed approach 

successfully detected all obfuscated variants in both real and 

simulated malicious samples. We further analyzed profiled 

data of kernel objects for each malware sample at each 

execution state, we argue that each profiled kernel object 

maintains a unique pattern of data traces that describe and 

determine the state currently being executed. Thus, by 

utilizing this observation, forensic identification of previously 

executed system calls is likely to be possible.    

 

At last, we state the contributions of this paper as follow: 

 An approach is proposed to develop a robust 

malware detection signature based on detected 

kernel data structure invariants that is evasion-

resistant to obfuscation techniques. 

 This approach automates the process of malware 

signature generation based on profiling kernel data 

structure objects monitored during the malware 

execution process. 

 A prototype malware signature generation tool is 

implemented to automate development of malware 

signatures through dynamic analysis and profiling of 

dynamic kernel data structure objects.  

 

The remainder of the paper is organized as follows: In 

section two, the system architecture of SigGENE is described. 

Section three presents the evaluation of the proposed approach. 

In section four, a brief discussion of the proposed approach is 

provided. In section five, we discuss the related work.  Finally, 

section six concludes the proposed approach. 

II. SYSTEM OVERVIEW 

In this section, the proposed malicious kernel objects profiling 

approach is presented and assisted with the design and 

implementation of SigGENE. SigGENE is a prototype 

malware signature generation engine that profiles malicious 

kernel objects for executed malware sample and determines 

invariant kernel objects’ features values during malicious code 

execution. To perform malware behavior profiling, SigGENE 

monitors the kernel objects that belong to the malicious code 

in memory throughout utilizing a Virtual Machine Monitoring 

and Introspection (VMI) techniques [10]. Fundamentally, 

VMI employment in the proposed approach allows in 

monitoring the dynamic changes to the kernel objects’ features 

and forms the basis for profiling malicious code behavior and 

monitoring malware execution. An overview of SigGENE 

system design is depicted in Figure 1.  

The design model of SigGENE is comprised of two 

complementary modules. The first module is designated to: 1) 

Identify features in kernel objects that effectively contribute to 

robust signatures development. 2) Monitor dynamic changes 

to kernel object features in the context of malicious code 

execution and develop kernel objects’ profiles.  The module 

functionalities are implemented in Virtual Machine Monitor 



(VMM) and Kernel Object Profiler components in Fig 1. The 

inputs to previously mentioned components are definitions to 

kernel objects data structure as defined in the guest operating 

system code and locations of the kernel objects instances in 

the guest OS memory. The second module utilizes developed 

kernel object profiles during dynamic monitoring and 

introspection of malicious code execution and determines 

invariants values over kernel object’s features to generate the 

evasion-resistant malware signature. 

A. Robust Features Identification 

Robust features are properties in monitored malicious 

kernel objects that effectively contribute to the execution of 

malicious code and assist in producing evasion-resistant 

detection signature. Identifying robust features is the core 

component in the proposed signature development approach. 

Since numerous features may be considered as viable 

candidates to the signature development process, only a 

limited number of features are effectively contribute to robust 

signature development. For example, EPROCESS kernel 

object and its substructure objects hold up to 2000 features 

based on the OS version [11]. Some of these features are 

unused or used in specific circumstances and others are prone 

to manipulation by malicious code.  That is, unused features or 

features prone to manipulation threat the signature integrity 

and assist in producing signatures that can be evaded if an 

appropriate evasion technique employed. Thus, locating 

features in kernel objects that allow in robust signature 

development is an inevitable portion of the proposed 

approach.  

In our implementation, a derivate of dynamic monitoring of 

kernel data structures using Virtual Machine Introspection 

(VMI) technique proposed in [5] has been used to identify 

robust features in the kernel objects. The key idea of the 

robust feature identification process is based on how important 

these features are to malicious code execution. Features that 

are accessed or modified while malware is being executed are 

more likely to be relevant to the malicious code execution, 

relative to features that are never accessed. Similarly, features 

that, if modified, will cause malware to misbehave, are more 

likely to have a strong relevancy to malicious code execution, 

than features, if changed, do not alter malware behavior. 

To identify robust features in EPROCESS kernel object 

that used in signature development process, we developed a 

dynamic monitoring component for EPROCESS kernel object 

features using (VMI) to identify whether EPROCESS’s 

features have been accessed or modified during malware 

execution process. We have customized a version of QEMU 

emulator [12], a fast processor emulator using dynamic code 

translation, to implement a kernel object memory monitoring. 

We instruct the customized QEMU to create an Event Traces 

for memory reads and writes routines that are part of the 

Virtual Machine Monitor (VMM) component shown in Figure 

1. Event tracer allows tracing dynamic changes on kernel 

object features through monitoring memory Reads and Writes 

operations over memory regions allocated to the kernel 

object’s features. Thus, if a memory region represents a 

malicious code kernel object is accessed or modified, an event 

is triggered to describe the offset of the memory region and 

the operation used to access the offsets. These logs are 

examined later and mapped to the definition of the 

EPROCESS kernel data structure to determine what features 

were accessed or modified and how often. Based on the results 

of tracing dynamic changes to memory regions allocated to 

kernel objects’ features, VMI event tracer determines robust 

features per malware sample that will be considered in the 

profiling process and will contribute in producing an evasion-

resistant malware detection signature. 

B. Malicious Kernel Objects Profiling 

In the profiling process, we profile kernel object features 

during malicious code execution. These profiles primarily 

describe the characteristics of monitored malicious kernel 

objects’ features that are analogous to malware execution 

semantics in different execution states.  

 

Figure 1: System Overview 



 
 

Figure 2: Kernel Object Profiling During Malicious Code 

Execution 

 

This process encompasses the execution of malicious code 

binaries in a controlled environment [13-16] to identify the 

malicious code information flow and executed system calls 

(syscalls). Since system calls are the main interface for 

programs to interact with the operating system kernel, we use 

system calls invocation procedure as a trigger for the profiling 

procedure. Unlike other systems that model malware behavior 

by specifying system calls execution sequences, we only use 

system calls invocation to trigger the process of profiling 

identified robust features in kernel objects. Unfortunately, 

systems relying on malware behavior profiling based on, only, 

system calls sequences are prone to different attacks such as 

insertion of irrelevant calls or call sequence re-ordering [17].  

Thus, to avoid such shortcoming, the proposed profiling 

process solely consider system calls invocations as an initiate 

to an execution state with no regards to the calls execution 

sequence. 

In this research, we defined a formalism to describe the 

process of kernel objects profiling in the context of malicious 

program execution. Malicious code control flow is represented 

in a finite state automata [17] model   that describes the  

malicious program behavior, where each state is labeled with a 

system call used by malware code to interact with the 

operating system kernel and edges are transitions that 

represent the dynamic control flow and determine the 

dependencies between states.  

 

Definition. A malicious code behavior           is a 

finite sequence of states               in S such that    and 

     with     , and L is labeling procedure         , 

in which      is an atomic proposition that is true at the 

execution of the system call    syscalls.  

 

In essence, invocation of a system call   causes changes to the 

control properties of a kernel object O, in which the operating 

system kernel changes the object O in way to permit it to 

execute  . Hence, we define invocation of   as a function that 

stimulates changing values of various properties (robust 

features) {          } in malicious kernel object      from 

{             } into {             }, such that, the features 

values hold after invocation of    uniquely define the 

characteristics of      robust feature at state s( ). The 

profiling procedure used to capture changes to      at 

invocation of   is defined as      , where the function 

    over    is defined as                        . 
Finally, the result of      robust feature profiling process are 

stored in the object snapshots profile repository  , such 

that,    ⟦    〈  〉     〈  〉        〈  〉⟧ .    

 

Based on the previous discussion, we define a malicious code 

profiling process  , more formally, as:    〈     〉, such 

that: 

   is a set of malicious code execution states where 

each state labeled with a system call  . 

   is a profiling procedure that monitor the dynamic 

changes to the features of a malicious kernel object 

     and capture the characteristics of object      

after invocation of  . 

   is a repository of profiles related to a malicious 

kernel object      that hold at different system calls 

invocations. 

 

Intuitively, the profiling process encodes the characteristics 

of malicious kernel object features at system call invocations. 

This means extracted profiles will represent malicious code 

execution from the kernel object data structure perspective. 

These profiles do not include specific information about 

malicious code syntax or execution sequence of malicious 

system calls. That is, the profiles are less vulnerable to 

obfuscation methods and evasion techniques that rely on 

manipulating code syntax.  

Practically, the process of malicious kernel object profiling 

is implemented at the Kernel Object Profiler (KOP) module as 

shown in Figure 1. KOP is a set of kernel device drivers that 

monitor invocation of the kernel systems calls invoked from 

malicious processes in memory throughout system call table 

hooking [18, 19]. This includes, monitoring systems calls that 

used in different aspects of the malicious programs execution, 

such as process and thread creation, malicious DLL loads and 

file, registry, network operations. Once malicious system call 

is invoked, the locations of the robust features belongs to  

malicious kernel object in memory are requested from the 

VMM, followed by an acquisition of the robust features’ 

values from the guest operating system’s memory. Note that, 

an assistant procedure defined as a provisional suppression of 

malicious code execution after system call invocations until 

the acquisitions of the robust features’ values is defined to 

allow consistent profiling and protect the features’ values of 

being overwritten before the completion of features’ values 

acquisition. 

Figure 2 depicts an excerpt from a profiled malicious kernel 



object while malicious code is being executed. In this graph, 

one can see various invoked system calls by the malicious 

code to obtain handle of a malicious process and get an access 

to the process token to probe a processes-space in memory. 

The profiling procedure in KOP is stimulated, once the VMM 

notify KOP with a notification routine of invoked system call 

and its arguments, to profile a snapshot of kernel objects’ 

robust features that represent malicious code in memory. 

Finally, the profiling procedure adds profiled kernel object 

features’ snapshot to the kernel object repository space. This 

repository space is a set of profiles representing characteristics 

of malicious kernel objects in the context of malware 

execution at different system calls invocations. 

Note that, the vector length of a profile snapshot is 

determined through the robust feature identification process, 

as previously explained.  For example, the length of a single 

snapshot varies from 100 robust features to 500 features. 

Similarly, the length of a malicious object repository space is 

determined based on the number of invoked system calls by 

malicious code. 

C. Signature Generation 

During malicious kernel object profiling process, numerous 

profile snapshots are obtained that uniquely characterize 

malicious object at each invoked system call. However, each 

profile snapshot represents a timely-specific characteristic of 

the malicious code behavior. In other words, it preserves the 

malicious kernel data structure characteristics at specific 

execution state. Thus, to aggregate obtained profiles and 

represent all execution states, an aggregation process is 

proposed to assemble the profile snapshots, and detect 

invariants features’ values obtained in the profiles acquisition 

process. In the profiles aggregation process, we used the 

concept of Dynamic Invariant Detection [20]. This concept is 

proposed to detect likely invariants in a user space program 

execution by instrumenting the source programs to trace 

variables of interest through program execution over a set of 

test cases. In the proposed approach, we use a simplified 

version of a dynamic invariant detector [20], where inputs to 

the detector is comprised of obtained profile snapshots from 

malicious code profiling process. The profile snapshots are 

examined by several test cases using different constraints and 

examination templates to detect invariant values of monitored 

robust features. An example for a constraint used to detect 

invariants in profiled malicious kernel object is a constant 

value for a specific robust feature, or a linear relationship 

between two features, given that they are present in all 

snapshot profiles. Another example is a value for a specific 

feature being in a specific range during malicious code 

information flow. Consequently, applying invariant detection 

process on obtained profile snapshots produces a profile that 

represents a unique invariants characteristic of malicious 

kernel objects features that holds over the life time of malware 

execution.  

Finally, produced profile is used as a signature to detect 

malware programs throughout scanning the dynamic kernel 

objects belong to a malicious executable in memory and 

matching characteristics of scanned dynamic kernel object 

with produced profiles.  

 

III. EVALUATION   

Several test cases performed to evaluate the efficiency of 

SigGENE and to prove that produced profiles are resistant to 

evasion and obfuscation techniques.  

Two different experiments were conducted to evaluate the 

proposed approach. In the first experiment, a program 

simulating a kernel-mode rootkit is developed to launches a 

dynamic kernel object manipulation attack (DKOM) [21] and 

hides a different malicious processes running in user-mode. 

Additionally, developed rootkit-simulator has been obfuscated 

using 3 different methods to determine if generated profile 

signature is capable of detecting obfuscated variants. Note 

that, used code obfuscation methods were obfuscation by 

encryption, code re-ordering and instruction substitution [2]. 

The result of code obfuscation process was generation of 13 

different variants of developed rootkit-simulator. The second 

experiment was conducted on real-world malware samples 

[22] from different samples families. Each sample family has 

up to 17 variants and executes the same functionalities, with a 

total number of 63 test samples. All samples have been 

scanned with two different AV detectors; the detectors, 

however, failed to detect 19 samples variants while developed 

profile signatures successfully detected all samples variants 

and obfuscated versions of the lab rootkit-simulator.  

The signature development process has been verified in 

different versions of Windows operating system to evaluate 

the kernel object profiling accuracy in different object’s 

definitions.  

Malicious Kernel Objects’ Profiles Characteristics 

 

Sample 
Family 1 

 

Sample 
Family 2 

 

Sample 
Family 3 

 

Sample 
Family 4 

 

Sample 
Family 5 

Lab 

Rootkit-
Simulator 

Family 

#Average Robust features 253 348 211 283 147 118 

#Average Obtained profile snapshots 277 513 293 375 256 188 

#Average read operations over robust features 9365 11975 7132 9844 8401 6121 

#Average write operations over robust features 2499 3730 1981 2373 1192 958 

# Signature detection false positives/negatives 0 0 0 0 0 0 

Table 1: Malicious Kernel Objects Profiling Results 

 

 

 



The profiling process was developed in Windows XP SP3 and 

Windows 7 SP1.We observed that identified robust features in 

Windows 7 were more comprehensive in describing the 

characteristics of malicious kernel object.  The vector length 

of features included in profiled snapshots was extended since 

EPROCESS kernel object definition in Windows 7 is slightly 

different compared to previous Windows versions and 

contains more flags that controls programs execution. 

The results of the experiments, given above in Table 1, 

describe and present the outputs of the profiling process for 

the test malware samples and developed rootkit-simulator 

used in SigGENE evaluation. The robust features results 

section presents features that are determined to be used in 

kernel object profiling process based on their contribution in 

malicious code execution process. Obtained profile snapshots 

section shows produced number of profile snapshots upon 

invocation of various system calls per malicious code 

execution run. As such, malicious code execution run 

represents the process of monitoring malicious code execution 

starting from the creation of a malicious process until 

malicious process termination. Finally, Read and Write 

operations over robust features section provides an indication 

on how determined features are relevant to the execution of 

malicious process and describe the numbers of dynamic 

changes of robust features’ values in malicious kernel object 

throughout malicious code execution. Note that, presented 

numbers is the average of sample evaluation and its variants.  

In the verification process, generated profiles used as a 

signature were also verified using several benign kernel 

objects representing user-mode programs and malicious kernel 

objects representing malware samples that were not a part of 

test cases, as well. All test cases did not produce false 

positives or negatives and generated profiles produced 

accurate results in detecting intended samples.  

Throughout the profiling process, we analyzed obtained 

profile snapshots for each test sample. A core observation was 

that each profile snapshot has a unique set of feature values 

that uniquely characterize the execution state itself. For 

example, while investigating the test lab rootkit-simulator 

snapshot profiles, no profile snapshot was identical to other 

snapshots and values of at least 20 robust features are unique 

compared to other profile snapshots and to other objects 

profile spaces. Thus, we argue that we can, not only, develop a 

signature to detect malware and its variant based on kernel 

object profiles, but also, identify system calls that have been 

invoked by malware, if profile snapshots information 

employed in malware forensic investigation analysis.  

Furthermore, in the profiling process we observed 

similarities between profiles extracted while invocation of 

system calls belong to same group family, i.e.  networking or 

memory related system calls. For example, system calls used 

to probe or attach to user address space of other processes in 

memory such as KeStackAttachProcess [11] changes 

the values of Token feature and debug flag to a unique 

value that enabled us to determine that a process probe related 

system calls have been invoked.  

By utilizing these observations, we can characterize malicious 

attacks based on similarities of profiles obtained during the 

attack execution.  For example, in an experiment designated to 

analyze three different rootkit samples launching a DKOM 

attack, we observed partial similarities between profiles 

extracted through execution of system calls related to the 

attack. Therefore, we argue that the proposed approach can be 

extended to detect unknown samples based on profiling the 

characteristics of malicious attacks. 

  

IV. DISCUSSION  

SigGENE is a signature-based malware detection approach, 

primarily designed to detect obfuscated malware and malware 

variants through profiling malicious dynamic kernel objects.  

Although signatures developed based on kernel object profiles 

demonstrate promising results in the evaluation phase, 

SigGENE prototype is confronted with a number of 

limitations, which are being addressed in our on-going work.  

 

 Profiling Performance: SigGENE traces memory access 

using a VM monitoring module as a basis for the robust 

feature identification process. This process is both time-

consuming and computationally expensive in profiling 

stage. Thus, our work in-progress includes a lightweight 

process memory monitor based on tracing memory page 

access on page fault errors from the operating system 

memory manager, instead of tracing read and write 

operations directly from the VM using Event Tracer.       

 Behavior Monitoring: We monitor malware execution by 

hooking the operating system calls. However, some anti-

analysis methods employed by malware do detect 

monitoring-based hooking. Thus, SigGENE may produce 

inaccurate profiles if the sample employs such methods. 

To overcome this shortcoming, we are moving the kernel 

object profiler and monitor component from the operating 

system kernel internals to outside by implementing the 

monitoring functionalities in the VM monitoring layer. 

This type of monitoring and profiling will as a result be 

transparent to malware samples under investigation. 

 Kernel Objects: The current scope of the proposed 

approach is limited to profile EPROCESS kernel data 

structures; one suggested improvement is to include 

additional kernel objects such as FILE_OBJECTS and 

VAD. We believe that inclusion of different kernel 

objects will yield to deeper and unique profiles 

generation, which will lead to improve malware behavior 

characterization. 

 Profiling Samples and Attack: Currently proposed 

approach profiles kernel malware samples and its 

variants. The evaluation results, however, demonstrated 

the possibility of profiling malicious attacks through the 

observation of kernel objects while invoking malicious 

system calls to perform a specific attack. Thus, our future 

work will includes an extension to the proposed approach 

to include malicious attacks profiling. 

 



V. RELATED WORK 

While signature-based detection has been studied for 

decades, malware detection based on behavioral profiling and 

defeating code obfuscation has become increasingly important 

in recent years. Various approaches have been proposed to 

characterize malware behaviors based on code execution flow 

[23-25]. However, such approaches were confronted with 

different obfuscation methods that elude malware analysis and 

traditional signature-based detectors.  

Panorama proposed a malicious code information tracking 

approach using taint-based information flow method to 

understand how data can be manipulated by the malicious 

code. However, this approach suffered from control flow 

evasion attacks that break a taint-based information flow 

method [26], hence, Panorama’s detection engine will not be 

able to detect variants employing this evasion method. 

Similarly, K-Tracer proposed a backward-forward slicing 

techniques on simulated kernel event traces to extract malware 

goals and functionalities [27]. However the proposed method 

requires prior determination of the data on which to perform 

the slicing operation. Another approach that profiles malware 

behavior was PoKer [28] which proposed a context tracking 

method to trace rootkit execution and extract a behavioral 

profile based on these execution traces. Although the approach 

can effectively profile different rootkit behaviors, extracted 

profile is, unfortunately, based on execution syntax and 

vulnerable to obfuscation methods. 

An improved method to profile rootkit behavior was 

proposed in [29]. DataGene proposed a memory data access 

pattern extraction approach to characterize the malware 

behavior. The main motivation behind DataGene was to avoid 

dependence on control flow execution to develop behavioral 

profiles. Thus, DataGene proposed a monitoring mechanism 

to access patterns of data resident in memory that belongs to 

the malicious code and extract unique access patterns that 

characterize malware execution. The limitation of this 

approach is that data access pattern is subject to the execution 

constraints and its environmental parameters, and hence it is 

not robust enough to be used as a malware signature. A similar 

profiling approach based on data access patterns was proposed 

in [30]. KILMAX correlates memory write patterns to normal 

distribution of user-issued key stokes to profile and detect 

key-logger malware. 

Perhaps the most research work relevant to the proposed 

approach was presented in [31]. Gibraltar by Baliga et al. takes 

advantage of data structure invariant inferences by generating a 

graph of kernel objects in memory and, then, derives 

constraints over the object data. Observed deviations from the 

inferred invariants are considered attacks against the kernel 

data structure.  In essence, the goal and a number of limitations 

that were discovered in Gibraltar make our approach and our 

implementation substantially different. Whereas Gibraltar 

profiles attacks to be able detect it, our approach profiles 

malware semantics to produce a robust detection signature and 

defeat obfuscation methods. Additionally, Gibraltar fetches the 

kernel data structure from the memory without filtering kernel 

object features based on relevance to the attack semantics. 

Consequently, a number of unnecessary features will be 

included in behavior profiling which is an issue regarding the 

precision of the generated profiles. 

 

VI. CONCLUSION 

Traditional signature based detection techniques can be 

bypassed using malicious code obfuscation or packing, since 

features used in signature development are vulnerable to 

manipulation and tampering by malicious code.   

In this research paper, we propose a novel method to 

develop a malware signature that is resistant to obfuscation 

techniques. The proposed signature is based on kernel object 

characteristics while avoiding dependency on specific 

malicious code information that may utilize to evade 

developed signatures. In addition, a method is proposed to 

identify kernel object’s features that effectively contribute to 

the development of a robust malware detection signature. 

Kernel object profiling and an invariant detection method are, 

also, proposed to assist the process of evasion-resistant 

signature development. 

To support the proposed approach, a prototype tool is 

developed to produce malware detection signatures based on 

obtained profiles. Experiments using real-world obfuscated 

malware samples show the effectiveness of developed 

signatures in detecting malware variants and obfuscated 

malicious code. 
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