Evasion-Resistant Malware Signature Based on
Profiling Kernel Data Structure Objects

Ahmed F.Shosha*, Chen-Ching Liu,
Pavel Gladyshev*
* School of Computer Science and Informatics,
School of Electrical, Electronics and Communication
Engineering.
University College Dublin.
Ahmed.Shosha@ucdconnect.ie
{Liu, Pavel.Gladyshev} @ucd.ie

Abstract— Malware authors attempt in an endless effort to find
new methods to evade the malware detection engines. A popular
method is the use of obfuscation technologies that change the
syntax of malicious code while preserving the execution
semantics. This leads to the evasion of signatures that are built
based on the code syntax. In this paper, we propose a novel
approach to develop an evasion-resistant malware signature.
This signature is based on the malware’s execution profiles
extracted from kernel data structure objects and neither uses
malicious code syntax specific information code execution flow
information. Thus, proposed signature is more resistant to
obfuscation methods and resilient in detecting malicious code
variants. To evaluate the effectiveness of the proposed approach,
a prototype signature generation tool called SigGENE is
developed. The effectiveness of signatures generated by SigGENE
evaluated using an experimental root Kkit-simulation tool that
employs techniques commonly found in rootkits. This simulation-
tool is obfuscated using several different methods. In further
experiments, real-world malware samples that have different
variants with the same behavior used to verify the real-world
applicability of the approach. The experiments show that the
proposed approach is effective, not only in generating a signature
that detects the malware and its variants and defeats different
obfuscation methods, but also, in producing an execution profiles
that can be used to characterize different malicious attacks.

Keywords: Malware Behavior Profiling, Malware Signature,
Signature-Based Detection, Kernel Data Structure.

I. INTRODUCTION

Traditional signature-based detection is one of the most
popular approaches to detect known malware in the anti-virus
(AV) industry. It relies on extracting sequences of bytes from
malicious code binaries that form a signature used to detect it.
Unfortunately, advances in malware development have led to
a variety of methods to evade malware detection signatures
that rely on byte sequence pattern matching.

A prevalent feature that is commonly used in modern
malware to bypass signature-based engines is employing code
obfuscation and packing technology [1, 2]. The term
obfuscation describes the process of intentional tampering and
manipulation of the malicious code syntax while preserving
the malicious behavior semantics. Practically, packing, code

Marcus Matten

Avira Research Department,
Avira Operations GmbH& Co. KG.
Marcus.Matten@avira.com

re-ordering and junk code insertions are the most commonly
used methods to subvert and evade signature-based detection
engines [3, 4]. Further obfuscation methods include API
obfuscation, in which unnecessary API calls are inserted in
malicious binaries to impede malicious code analysis process
and encounter code emulation [2]. Unfortunately, employing
these methods in malware code, not only, hinder malware
analysis and malware forensic investigation, but also, various
malicious code variant programs can casily be generated.
These malicious programs are capable of executing the
original malicious payload, while being transparent to the
original detection signatures.

In essence, the intent of these obfuscation methods is to
subvert features input used in signature development process.
As a result, created signatures will be ineffective in detecting
obfuscated malicious code. Particularly, signatures developed
based on features prone to manipulation and obfuscation cause
signature detection failures, whereas signatures developed
based on features sensitive to tampering are resistant to
obfuscation methods and evasions techniques.

In this paper, a novel method is proposed to develop an
evasion-resistant malware signature based on features that are
sensitive to tampering and robust in detecting malware
behavior. In the proposed approach, the characteristics of
operating system kernel data structure objects [5] are used to
develop malware signature instead of traditional signature that
relies on byte sequence matching.

The operating system kernel manages several data structure
objects that describe and manage the operations of the
programs being executed. The syntax and semantic of such
data structure objects are defined by the operating system
code. Tampering or modifying these kernel objects properties
while programs are being executed can cause the operating
system to crash or produces unpredictable behaviors.
Furthermore, kernel objects are considered to be an analogous
representation of code executed in the operating system
kernel. Therefore, characteristics of kernel objects’ features
are a potential source for deriving evasion-resistant malware
signatures.

The key idea of the proposed approach is to profile the
invariant values of the kernel objects’ features that represent
malicious code execution during malware dynamic analysis
process in a controlled profiling environment. Profiled
features, then, will be used to derive a robust malware
detection signature.

The process of features profiling is based on monitoring the
malware information flow at different execution states, i.e.
system call invocations. In each monitored execution state,
there exists a unique pattern of features’ values in the kernel
objects that characterize malware behaviors and values of
these features uniquely describe the semantics of the malicious
code execution state. As such, by aggregating all the values of
kernel object’s features that are profiled during the malicious
code execution process, we can detect invariants that precisely
represent the malware execution. These invariants are, then,
used to develop a unique malware signature that is robust,
sensitive to manipulation, and can detect malware variants and
obfuscated malware samples.

In this work, malware signature is developed based on
profiling EPROCESS, a dynamic kernel object that is used to
represent a running process in Windows operating systems.
However, the proposed approach can easily be extended to
profile other kernel objects types that represent various aspects
of the program behavior. We monitor the dynamic changes to
the EPROCESS object related to a malware in memory while
malware’s code is being executed. Thereafter, an invariant
identification technique called “data structure invariant
detection” [7] is utilized to aggregate the profiled EPROCESS
object throughout different execution states and determine
invariants values from profiled object’s features. Determined
invariants describe different properties of monitored object
that hold over the life time of malware execution. An invariant
in profiled EPROCESS object can, for example, be a specific
value of a security Token that represents control access to a
process object. Further, invariant can be a specific value of
EPROCESS Flags that represent process execution flags.

To evaluate the proposed approach, we implemented a
prototype malware signature generation tool called SigGENE.
The tool profiles values of EPROCESS kernel object features
in a dynamic analysis environment [6]. This involves hooking
the operating system API call table [8, 9] and building a
custom kernel device driver in order to capture dynamic
changes to EPROCESS features in the profiling phase.

In the experimentation phase, we developed detection
signatures for several real-world malware variants that belong
to five different malware samples families and obfuscated
using different techniques. In addition, we evaluated the
proposed approach on our developed kernel-mode rootkit-
simulation program that features user-space process hiding.
Developed rootkit-simulator has been obfuscated using three
different techniques to verify the -effectiveness of the
generated signature in defeating different obfuscation
methods. A number of the test malware variants effectively

evade two different AV scanners that could not detect all
malware variants. However, the proposed approach
successfully detected all obfuscated variants in both real and
simulated malicious samples. We further analyzed profiled
data of kernel objects for each malware sample at each
execution state, we argue that each profiled kernel object
maintains a unique pattern of data traces that describe and
determine the state currently being executed. Thus, by
utilizing this observation, forensic identification of previously
executed system calls is likely to be possible.

At last, we state the contributions of this paper as follow:

e An approach is proposed to develop a robust
malware detection signature based on detected
kernel data structure invariants that is evasion-
resistant to obfuscation techniques.

e This approach automates the process of malware
signature generation based on profiling kernel data
structure objects monitored during the malware
execution process.

e A prototype malware signature generation tool is
implemented to automate development of malware
signatures through dynamic analysis and profiling of
dynamic kernel data structure objects.

The remainder of the paper is organized as follows: In
section two, the system architecture of SigGENE is described.
Section three presents the evaluation of the proposed approach.
In section four, a brief discussion of the proposed approach is
provided. In section five, we discuss the related work. Finally,
section six concludes the proposed approach.

II. SYSTEM OVERVIEW

In this section, the proposed malicious kernel objects profiling
approach is presented and assisted with the design and
implementation of SigGENE. SigGENE is a prototype
malware signature generation engine that profiles malicious
kernel objects for executed malware sample and determines
invariant kernel objects’ features values during malicious code
execution. To perform malware behavior profiling, SigGENE
monitors the kernel objects that belong to the malicious code
in memory throughout utilizing a Virtual Machine Monitoring
and Introspection (VMI) techniques [10]. Fundamentally,
VMI employment in the proposed approach allows in
monitoring the dynamic changes to the kernel objects’ features
and forms the basis for profiling malicious code behavior and
monitoring malware execution. An overview of SigGENE
system design is depicted in Figure 1.

The design model of SigGENE is comprised of two
complementary modules. The first module is designated to: 1)
Identify features in kernel objects that effectively contribute to
robust signatures development. 2) Monitor dynamic changes
to kernel object features in the context of malicious code
execution and develop kernel objects’ profiles. The module
functionalities are implemented in Virtual Machine Monitor

Virtual Machine

|

| Guest OS Kernel I | Guest OS Memory

|] I

_________ e

o T A
[S S [
1
| I Kernel Object Profiler i
| Ll __.
| | |
v y] \ S
| r
i i Virtual Machine Monitor/ Event Tracer
TSRS
-

(VMM) and Kernel Object Profiler components in Fig 1. The
inputs to previously mentioned components are definitions to
kernel objects data structure as defined in the guest operating
system code and locations of the kernel objects instances in
the guest OS memory. The second module utilizes developed
kernel object profiles during dynamic monitoring and
introspection of malicious code execution and determines
invariants values over kernel object’s features to generate the
evasion-resistant malware signature.

A. Robust Features Identification

Robust features are properties in monitored malicious
kernel objects that effectively contribute to the execution of
malicious code and assist in producing evasion-resistant
detection signature. Identifying robust features is the core
component in the proposed signature development approach.
Since numerous features may be considered as viable
candidates to the signature development process, only a
limited number of features are effectively contribute to robust
signature development. For example, EPROCESS kernel
object and its substructure objects hold up to 2000 features
based on the OS version [11]. Some of these features are
unused or used in specific circumstances and others are prone
to manipulation by malicious code. That is, unused features or
features prone to manipulation threat the signature integrity
and assist in producing signatures that can be evaded if an
appropriate evasion technique employed. Thus, locating
features in kernel objects that allow in robust signature
development is an inevitable portion of the proposed
approach.

In our implementation, a derivate of dynamic monitoring of
kernel data structures using Virtual Machine Introspection
(VMI) technique proposed in [5] has been used to identify
robust features in the kernel objects. The key idea of the
robust feature identification process is based on how important
these features are to malicious code execution. Features that
are accessed or modified while malware is being executed are
more likely to be relevant to the malicious code execution,

: System Overview

relative to features that are never accessed. Similarly, features
that, if modified, will cause malware to misbehave, are more
likely to have a strong relevancy to malicious code execution,
than features, if changed, do not alter malware behavior.

To identify robust features in EPROCESS kernel object
that used in signature development process, we developed a
dynamic monitoring component for EPROCESS kernel object
features using (VMI) to identify whether EPROCESS’s
features have been accessed or modified during malware
execution process. We have customized a version of QEMU
emulator [12], a fast processor emulator using dynamic code
translation, to implement a kernel object memory monitoring.
We instruct the customized QEMU to create an Event Traces
for memory reads and writes routines that are part of the
Virtual Machine Monitor (VMM) component shown in Figure
1. Event tracer allows tracing dynamic changes on kernel
object features through monitoring memory Reads and Writes
operations over memory regions allocated to the kernel
object’s features. Thus, if a memory region represents a
malicious code kernel object is accessed or modified, an event
is triggered to describe the offset of the memory region and
the operation used to access the offsets. These logs are
examined later and mapped to the definition of the
EPROCESS kernel data structure to determine what features
were accessed or modified and how often. Based on the results
of tracing dynamic changes to memory regions allocated to
kernel objects’ features, VMI event tracer determines robust
features per malware sample that will be considered in the
profiling process and will contribute in producing an evasion-
resistant malware detection signature.

B. Malicious Kernel Objects Profiling

In the profiling process, we profile kernel object features
during malicious code execution. These profiles primarily
describe the characteristics of monitored malicious kernel
objects’ features that are analogous to malware execution
semantics in different execution states.

Invoked Sys. Calls EPROCESS Profiles

‘7”27""9??"})7“2‘??‘77‘L TTT[TTT™ ZOP Profile Snapshot |
,,,,,,,,, A T

i ZwCurrentThread +-{-|-# ZCT Profile Snapshot |
R L S — ‘ L e :
i ZWOpenProcessTokenEX - -+ »| ZOPTE Profile Snapshot
........... SRR
ZwSetlnfoThread - |-\ ---- > ZSIT Profile Snapshot !

Figure 2: Kernel Object Profiling During Malicious Code
Execution

This process encompasses the execution of malicious code
binaries in a controlled environment [13-16] to identify the
malicious code information flow and executed system calls
(syscalls). Since system calls are the main interface for
programs to interact with the operating system kernel, we use
system calls invocation procedure as a trigger for the profiling
procedure. Unlike other systems that model malware behavior
by specifying system calls execution sequences, we only use
system calls invocation to trigger the process of profiling
identified robust features in kernel objects. Unfortunately,
systems relying on malware behavior profiling based on, only,
system calls sequences are prone to different attacks such as
insertion of irrelevant calls or call sequence re-ordering [17].
Thus, to avoid such shortcoming, the proposed profiling
process solely consider system calls invocations as an initiate
to an execution state with no regards to the calls execution
sequence.

In this research, we defined a formalism to describe the
process of kernel objects profiling in the context of malicious
program execution. Malicious code control flow is represented
in a finite state automata [17] model M that describes the
malicious program behavior, where each state is labeled with a
system call used by malware code to interact with the
operating system kernel and edges are transitions that
represent the dynamic control flow and determine the
dependencies between states.

Definition. A malicious code behavior M = (§,—,L) is a
finite sequence of states s;,S,,Ss, ..., S, in S such that s"and
s € S withs — s', and L is labeling procedure L: S — (@),
in which ¥ (¢) is an atomic proposition that is true at the
execution of the system call ¢ € syscalls.

In essence, invocation of a system call ¢ causes changes to the
control properties of a kernel object O, in which the operating
system kernel changes the object O in way to permit it to
execute ¢. Hence, we define invocation of ¢ as a function that

stimulates changing values of various properties (robust
features) {p4, p2,..pn} in malicious kernel object 0,,,; from
{1, J2 J3 - Jn} into {kq, ky, k3, ..k}, such that, the features
values hold after invocation of ¢ uniquely define the
characteristics of o0,,,; robust feature at state s(@). The
profiling procedure used to capture changes to 0,,, at
invocation of ¢ is defined as F¢, € F, where the function
Fo, over @, is defined as Fo, : ji,...jm — K, k.-
Finally, the result of 0,,, robust feature profiling process are
stored in the object snapshots profile repository R, such

that, R = [[Omal«pl)! Omal<(p2)!) Omal(‘ﬂx)]] .

Based on the previous discussion, we define a malicious code
profiling process P, more formally, as: P := (S, F,R), such
that:
e S is a set of malicious code execution states where
each state labeled with a system call ¢.
o F is a profiling procedure that monitor the dynamic
changes to the features of a malicious kernel object
Oma; and capture the characteristics of object 0,,4;
after invocation of ¢.
e R is a repository of profiles related to a malicious
kernel object 0,,,; that hold at different system calls
invocations.

Intuitively, the profiling process encodes the characteristics
of malicious kernel object features at system call invocations.
This means extracted profiles will represent malicious code
execution from the kernel object data structure perspective.
These profiles do not include specific information about
malicious code syntax or execution sequence of malicious
system calls. That is, the profiles are less vulnerable to
obfuscation methods and evasion techniques that rely on
manipulating code syntax.

Practically, the process of malicious kernel object profiling
is implemented at the Kernel Object Profiler (KOP) module as
shown in Figure 1. KOP is a set of kernel device drivers that
monitor invocation of the kernel systems calls invoked from
malicious processes in memory throughout system call table
hooking [18, 19]. This includes, monitoring systems calls that
used in different aspects of the malicious programs execution,
such as process and thread creation, malicious DLL loads and
file, registry, network operations. Once malicious system call
is invoked, the locations of the robust features belongs to
malicious kernel object in memory are requested from the
VMM, followed by an acquisition of the robust features’
values from the guest operating system’s memory. Note that,
an assistant procedure defined as a provisional suppression of
malicious code execution after system call invocations until
the acquisitions of the robust features’ values is defined to
allow consistent profiling and protect the features’ values of
being overwritten before the completion of features’ values
acquisition.

Figure 2 depicts an excerpt from a profiled malicious kernel

Lab
Malicious Kernel Objects’ Profiles Characteristics Fi?;r;{’;el Fiﬁf;ez Fiﬁfylz Fiﬁfylz Fsaé:;rilf’;es Sl?rgl?ltéizr
Family

#Average Robust features 253 348 211 283 147 118
#Average Obtained profile snapshots 277 513 293 375 256 188
#Average read operations over robust features 9365 11975 7132 9844 8401 6121
#Average write operations over robust features 2499 3730 1981 2373 1192 958
Signature detection false positives/negatives 0 0 0 0 0 0

Table 1: Malicious Kernel Objects Profiling Results

object while malicious code is being executed. In this graph,
one can see various invoked system calls by the malicious
code to obtain handle of a malicious process and get an access
to the process token to probe a processes-space in memory.
The profiling procedure in KOP is stimulated, once the VMM
notify KOP with a notification routine of invoked system call
and its arguments, to profile a snapshot of kernel objects’
robust features that represent malicious code in memory.
Finally, the profiling procedure adds profiled kernel object
features’ snapshot to the kernel object repository space. This
repository space is a set of profiles representing characteristics
of malicious kernel objects in the context of malware
execution at different system calls invocations.

Note that, the vector length of a profile snapshot is
determined through the robust feature identification process,
as previously explained. For example, the length of a single
snapshot varies from 100 robust features to 500 features.
Similarly, the length of a malicious object repository space is
determined based on the number of invoked system calls by
malicious code.

C. Signature Generation

During malicious kernel object profiling process, numerous
profile snapshots are obtained that uniquely characterize
malicious object at each invoked system call. However, each
profile snapshot represents a timely-specific characteristic of
the malicious code behavior. In other words, it preserves the
malicious kernel data structure characteristics at specific
execution state. Thus, to aggregate obtained profiles and
represent all execution states, an aggregation process is
proposed to assemble the profile snapshots, and detect
invariants features’ values obtained in the profiles acquisition
process. In the profiles aggregation process, we used the
concept of Dynamic Invariant Detection [20]. This concept is
proposed to detect likely invariants in a user space program
execution by instrumenting the source programs to trace
variables of interest through program execution over a set of
test cases. In the proposed approach, we use a simplified
version of a dynamic invariant detector [20], where inputs to
the detector is comprised of obtained profile snapshots from
malicious code profiling process. The profile snapshots are
examined by several test cases using different constraints and
examination templates to detect invariant values of monitored
robust features. An example for a constraint used to detect

invariants in profiled malicious kernel object is a constant
value for a specific robust feature, or a linear relationship
between two features, given that they are present in all
snapshot profiles. Another example is a value for a specific
feature being in a specific range during malicious code
information flow. Consequently, applying invariant detection
process on obtained profile snapshots produces a profile that
represents a unique invariants characteristic of malicious
kernel objects features that holds over the life time of malware
execution.

Finally, produced profile is used as a signature to detect
malware programs throughout scanning the dynamic kernel
objects belong to a malicious executable in memory and
matching characteristics of scanned dynamic kernel object
with produced profiles.

III. EVALUATION

Several test cases performed to evaluate the efficiency of
SigGENE and to prove that produced profiles are resistant to
evasion and obfuscation techniques.

Two different experiments were conducted to evaluate the
proposed approach. In the first experiment, a program
simulating a kernel-mode rootkit is developed to launches a
dynamic kernel object manipulation attack (DKOM) [21] and
hides a different malicious processes running in user-mode.
Additionally, developed rootkit-simulator has been obfuscated
using 3 different methods to determine if generated profile
signature is capable of detecting obfuscated variants. Note
that, used code obfuscation methods were obfuscation by
encryption, code re-ordering and instruction substitution [2].
The result of code obfuscation process was generation of 13
different variants of developed rootkit-simulator. The second
experiment was conducted on real-world malware samples
[22] from different samples families. Each sample family has
up to 17 variants and executes the same functionalities, with a
total number of 63 test samples. All samples have been
scanned with two different AV detectors; the detectors,
however, failed to detect 19 samples variants while developed
profile signatures successfully detected all samples variants
and obfuscated versions of the lab rootkit-simulator.

The signature development process has been verified in
different versions of Windows operating system to evaluate
the kernel object profiling accuracy in different object’s
definitions.

The profiling process was developed in Windows XP SP3 and
Windows 7 SP1.We observed that identified robust features in
Windows 7 were more comprehensive in describing the
characteristics of malicious kernel object. The vector length
of features included in profiled snapshots was extended since
EPROCESS kernel object definition in Windows 7 is slightly
different compared to previous Windows versions and
contains more flags that controls programs execution.

The results of the experiments, given above in Table 1,
describe and present the outputs of the profiling process for
the test malware samples and developed rootkit-simulator
used in SigGENE evaluation. The robust features results
section presents features that are determined to be used in
kernel object profiling process based on their contribution in
malicious code execution process. Obtained profile snapshots
section shows produced number of profile snapshots upon
invocation of various system calls per malicious code
execution run. As such, malicious code execution run
represents the process of monitoring malicious code execution
starting from the creation of a malicious process until
malicious process termination. Finally, Read and Write
operations over robust features section provides an indication
on how determined features are relevant to the execution of
malicious process and describe the numbers of dynamic
changes of robust features’ values in malicious kernel object
throughout malicious code execution. Note that, presented
numbers is the average of sample evaluation and its variants.

In the verification process, generated profiles used as a
signature were also verified using several benign kernel
objects representing user-mode programs and malicious kernel
objects representing malware samples that were not a part of
test cases, as well. All test cases did not produce false
positives or negatives and generated profiles produced
accurate results in detecting intended samples.

Throughout the profiling process, we analyzed obtained
profile snapshots for each test sample. A core observation was
that each profile snapshot has a unique set of feature values
that uniquely characterize the execution state itself. For
example, while investigating the test lab rootkit-simulator
snapshot profiles, no profile snapshot was identical to other
snapshots and values of at least 20 robust features are unique
compared to other profile snapshots and to other objects
profile spaces. Thus, we argue that we can, not only, develop a
signature to detect malware and its variant based on kernel
object profiles, but also, identify system calls that have been
invoked by malware, if profile snapshots information
employed in malware forensic investigation analysis.

Furthermore, in the profiling process we observed
similarities between profiles extracted while invocation of
system calls belong to same group family, i.e. networking or
memory related system calls. For example, system calls used
to probe or attach to user address space of other processes in
memory such as KeStackAttachProcess [11] changes
the values of Token feature and debug flag to a unique
value that enabled us to determine that a process probe related
system calls have been invoked.

By utilizing these observations, we can characterize malicious
attacks based on similarities of profiles obtained during the
attack execution. For example, in an experiment designated to
analyze three different rootkit samples launching a DKOM
attack, we observed partial similarities between profiles
extracted through execution of system calls related to the
attack. Therefore, we argue that the proposed approach can be
extended to detect unknown samples based on profiling the
characteristics of malicious attacks.

IV. DISCUSSION

SigGENE is a signature-based malware detection approach,
primarily designed to detect obfuscated malware and malware
variants through profiling malicious dynamic kernel objects.
Although signatures developed based on kernel object profiles
demonstrate promising results in the evaluation phase,
SigGENE prototype is confronted with a number of
limitations, which are being addressed in our on-going work.

e Profiling Performance: SigGENE traces memory access
using a VM monitoring module as a basis for the robust
feature identification process. This process is both time-
consuming and computationally expensive in profiling
stage. Thus, our work in-progress includes a lightweight
process memory monitor based on tracing memory page
access on page fault errors from the operating system
memory manager, instead of tracing read and write
operations directly from the VM using Event Tracer.

e Behavior Monitoring: We monitor malware execution by
hooking the operating system calls. However, some anti-
analysis methods employed by malware do detect
monitoring-based hooking. Thus, SigGENE may produce
inaccurate profiles if the sample employs such methods.
To overcome this shortcoming, we are moving the kernel
object profiler and monitor component from the operating
system kernel internals to outside by implementing the
monitoring functionalities in the VM monitoring layer.
This type of monitoring and profiling will as a result be
transparent to malware samples under investigation.

o Kernel Objects: The current scope of the proposed
approach is limited to profile EPROCESS kernel data
structures; one suggested improvement is to include
additional kernel objects such as FILE OBJECTS and
VAD. We believe that inclusion of different kernel
objects will yield to deeper and unique profiles
generation, which will lead to improve malware behavior
characterization.

o Profiling Samples and Attack: Currently proposed
approach profiles kernel malware samples and its
variants. The evaluation results, however, demonstrated
the possibility of profiling malicious attacks through the
observation of kernel objects while invoking malicious
system calls to perform a specific attack. Thus, our future
work will includes an extension to the proposed approach
to include malicious attacks profiling.

V. RELATED WORK

While signature-based detection has been studied for
decades, malware detection based on behavioral profiling and
defeating code obfuscation has become increasingly important
in recent years. Various approaches have been proposed to
characterize malware behaviors based on code execution flow
[23-25]. However, such approaches were confronted with
different obfuscation methods that elude malware analysis and
traditional signature-based detectors.

Panorama proposed a malicious code information tracking
approach using taint-based information flow method to
understand how data can be manipulated by the malicious
code. However, this approach suffered from control flow
evasion attacks that break a taint-based information flow
method [26], hence, Panorama’s detection engine will not be
able to detect variants employing this evasion method.
Similarly, K-Tracer proposed a backward-forward slicing
techniques on simulated kernel event traces to extract malware
goals and functionalities [27]. However the proposed method
requires prior determination of the data on which to perform
the slicing operation. Another approach that profiles malware
behavior was PoKer [28] which proposed a context tracking
method to trace rootkit execution and extract a behavioral
profile based on these execution traces. Although the approach
can effectively profile different rootkit behaviors, extracted
profile is, unfortunately, based on execution syntax and
vulnerable to obfuscation methods.

An improved method to profile rootkit behavior was
proposed in [29]. DataGene proposed a memory data access
pattern extraction approach to characterize the malware
behavior. The main motivation behind DataGene was to avoid
dependence on control flow execution to develop behavioral
profiles. Thus, DataGene proposed a monitoring mechanism
to access patterns of data resident in memory that belongs to
the malicious code and extract unique access patterns that
characterize malware execution. The limitation of this
approach is that data access pattern is subject to the execution
constraints and its environmental parameters, and hence it is
not robust enough to be used as a malware signature. A similar
profiling approach based on data access patterns was proposed
in [30]. KILMAX correlates memory write patterns to normal
distribution of user-issued key stokes to profile and detect
key-logger malware.

Perhaps the most research work relevant to the proposed
approach was presented in [31]. Gibraltar by Baliga et al. takes
advantage of data structure invariant inferences by generating a
graph of kernel objects in memory and, then, derives
constraints over the object data. Observed deviations from the
inferred invariants are considered attacks against the kernel
data structure. In essence, the goal and a number of limitations
that were discovered in Gibraltar make our approach and our
implementation substantially different. Whereas Gibraltar
profiles attacks to be able detect it, our approach profiles
malware semantics to produce a robust detection signature and
defeat obfuscation methods. Additionally, Gibraltar fetches the

kernel data structure from the memory without filtering kernel
object features based on relevance to the attack semantics.
Consequently, a number of unnecessary features will be
included in behavior profiling which is an issue regarding the
precision of the generated profiles.

VI. CONCLUSION

Traditional signature based detection techniques can be
bypassed using malicious code obfuscation or packing, since
features used in signature development are vulnerable to
manipulation and tampering by malicious code.

In this research paper, we propose a novel method to
develop a malware signature that is resistant to obfuscation
techniques. The proposed signature is based on kernel object
characteristics while avoiding dependency on specific
malicious code information that may utilize to evade
developed signatures. In addition, a method is proposed to
identify kernel object’s features that effectively contribute to
the development of a robust malware detection signature.
Kernel object profiling and an invariant detection method are,
also, proposed to assist the process of evasion-resistant
signature development.

To support the proposed approach, a prototype tool is
developed to produce malware detection signatures based on
obtained profiles. Experiments using real-world obfuscated
malware samples show the effectiveness of developed
signatures in detecting malware variants and obfuscated
malicious code.

ACKNOWLEDGMENT

The authors would like to thank Avira’s GmbH research
department and detection engine team for their useful ideas,
advices and contribution in this research. We would also like to
thank our anonymous reviewer for their useful comments and
suggestions. The authors would like to acknowledge support
from EU FP7 project, "A Framework for Electrical Power
Systems Vulnerability Identification, Defence and Restoration
(AFTER)," at University College Dublin.

This research work is a part of on-going effort to produce a
novel computational methods and detection engine to detect
targeted malware intrusions to the software infrastructure of
physical security systems.

REFERENCES

[1] Guo, F., P. Ferrie, and T. Chiueh, “A Study of the Packer
Problem and Its Solutions”, In 11th International
Symposium on Recent Advances in Intrusion Detection,
2008, p. 98-115.

[2] You, L. and K. Yim, “Malware Obfuscation Techniques: A
Brief Survey”, In International Conference on Broadband,
Wireless Computing, Communication and Applications,
2010, IEEE Computer Society. p. 297-300.

[3] Sharif, M., et al. “Impeding Malware Analysis Using
Conditional Code Obfuscation”. In Network and
Distributed System Security Symposium, 2008.

[4]
[5]

[10]

[11]

[12]

[13]

[14]

[16]

Yan, W., Z. Zhang, and N. Ansari, “Revealing Packed
Malware”, In IEEE Security and Privacy, 2008, p. 65-69.
Dolan-Gavitt, B., et al., “Robust Signatures for Kernel Data
Structures”, In 16th ACM Conference on Computer and
Communications Security, 2009, p. 566-577.

Egele, M., et al., “A Survey on Automated Dynamic
Malware-Analysis Techniques and Tools”, ACM Comput.
Surv., 2008. Vol 44(2): p. 1-42.

Emst, M., et al., “Quickly Detecting Relevant Program
Invariants”, In 22nd International Conference on Software
Engineering, 2000, p. 449-458.

Mutz, D., et al.,, “Anomalous System Call Detection”, In
ACM Trans. Inf. Syst. Secur., 2006.Vol 9(1): p. 61-93.
Forrest, S., S. Hofmeyr, and A. Somayaji, “The Evolution
of System-Call Monitoring”, In Annual Computer Security
Applications Conference, 2008, p. 418-430.

Nance, K., M. Bishop, and B. Hay, “Virtual Machine
Introspection: Observation or Interference?” IEEE Security
and Privacy, 2008. Vol 6(5): p. 32-37.

Microsoft, “System-Defined Data Structures”, 2012 [cited
May 2012]; Available from: http://msdn.microsoft.com/en-
us/library/windows/hardware/ff564540(v=vs.85).aspx.
Bellard, F., “QEMU, A Fast and Portable Dynamic
Translator”, In USENIX, 2005, p. 41-41.

C, W., T. Holz, and F. Freiling, “Toward Automated
Dynamic Malware Analysis Using CWSandbox”. In IEEE
Security and Privacy, 2007. Vol 5(2): p. 32-39.

Dinaburg, A., et al, “Ether: Malware Analysis via
Hardware Virtualization Extensions”, In 15th ACM
conference on Computer and Communications security,
2008, p. 51-62.

Vasudevan, A. and R. Yerraballi, “Cobra: Fine-grained
Malware Analysis using Stealth Localized-executions”, In
IEEE Symposium on Security and Privacy, 2006, p. 264-
279.

Newsome, J. and D. Song, “Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation
of Exploits on Commodity Software”. In Network and
Distributed System Security Symposium, 2005.

Kolbitsch, C., et al., “Effective and Efficient Malware
Detection at the End Host”, In 18th Conference on
USENIX Security Symposium, 2009, p. 351-366.

Yin, H., Z. Liang, and D. Song, “HookFinder: Identifying
and Understanding Malware Hooking Behaviors”. In
Distributed System Security Symposium, 2008.

Hunt, G. and D. Brubacher, “Detours: Binary Interception
of Win32 Functions”, In 3rd Conference on USENIX
Windows NT Symposium, Vol 3, p. 14-14.

Ernst, M., et al, “The Daikon System for Dynamic
Detection of Likely Invariants”. Sci. Comput. Program.,
2007, Vol 69(1-3): p. 35-45.

Hoglund, G., “Rootkits: Subverting the Windows Kernel”,
2005: Addison-Wesley Professional. 352.

Offensive Computing. [cited May 2012]; Available from:
http://www.offensivecomputing.net/.

Moser, A., C. Kruegel, and E. Kirda, “Exploring Multiple
Execution Paths for Malware Analysis”, In IEEE
Symposium on Security and Privacy, 2007, p. 231-245.
Xuan, C., J. Copeland, and R. Beyah, “Toward Revealing
Kernel Malware Behavior in Virtual Execution
Environments”, In 12th International Symposium on
Recent Advances in Intrusion Detection, 2009, p. 304-325.

[25]

[26]

[27]

[28]

[29]

[31]

Preda, M., “Code Obfuscation and Malware Detection by
Abstract Interpretation”, In Dipartimento di Informatica,
2010.

Yin, H., et al., “Panorama: Capturing System-wide
Information Flow for Malware Detection and Analysis”, In
14th ACM Conference on Computer and Communications
Security, 2007, p. 116-127.

Lanzi, A., M. Sharif, and W. Lee, “K-Tracer: A System for
Extracting Kernel Malware Behavior”, In 16th Annual
Network and Distributed System Security Symposium,
2009.

Riley, R., X. Jiang, and D. Xu, “Multi-aspect Profiling of
Kernel Rootkit Behavior”, In 4th ACM European
Conference on Computer Systems, 2009, p. 47-60.

Rhee, J., Z. Lin, and D. Xu, “Characterizing Kernel
Malware Behavior with Kernel Data Access Patterns”, In
6th ACM Symposium on Information, Computer and
Communications Security, 2011, p. 207-216.

Ortolani, S., C. Giuffrida, and B. Crispo. “KLIMAX:
Profiling Memory Write Patterns to Detect Keystroke-
Harvesting Malware”. In International Symposium on
Recent Advances in Intrusion Detection (RAID 2011).
Baliga, A., V. Ganapathy, and L. Iftode, “Detecting Kernel-
Level Rootkits Using Data Structure Invariants”. In IEEE
Trans. Dependable Secur. Comput., 2011. Vol 8(5): p. 670-
684.

