
A Novel Methodology for Malware Intrusion Attack

Path Reconstruction

Ahmed F. Shosha, Joshua I. James, and Pavel Gladyshev

School of Computer Science and Informatics
Centre for Cyber Security and Cyber Crime Investigation

University College Dublin, Ireland
ahmed.shosha@ucdconnect.ie,

{joshua.james, pavel.gladychev}@ucd.ie

Abstract. After an intrusion has propagated between hosts, or even between
networks, determining the propagation path is critical to assess exploited
network vulnerabilities, and also to determine the vector and intent of the initial
intrusion. This work proposes a novel method for malware intrusion attack path

reconstruction that extends post-mortem system state comparison methods with
network-level correlation and timeline analysis. This work shows that intrusion-
related events can be reconstructed at the host level and correlated between
related hosts and networks to reconstruct the overall path of an attack. A case
study is given that demonstrates the applicability of the attack path
reconstruction technique.

Keywords: Malware Analysis, Attack Path Reconstruction, Digital

Forensics, Network Forensics, Automatic Event Reconstruction

1 Introduction

The Internet has become an essential part of the daily life of many people, as well

as the backbone of almost all business, services and industries. However, the Internet

not only brings a wealth of commerce, communication and knowledge sharing, but
also new threats in the form of malware, digital attacks and privacy leaks.

Over the past few years, antivirus vendors have shown that malicious programs

that are developed for illegal purposes have grown dramatically. Symantec security

threats report recorded over 3 billion malware attacks in 2010, with a 93% increase in

web based attacks compared to 2009 [1]. The attacks include targeted attacks on

critical infrastructure networks such as Supervisory Control And Data Acquisition

(SCADA) networks attacks (a.k.a Stuxnet malware), the Hydraq attack (a.k.a Aroura),

Social networking malware intrusions, and mobile malware intrusions. Much of this

has been developed to support professional computer criminals and Internet gangs.

This overwhelming increase use of the malware intrusions by computer criminals

combined with advanced techniques to hide the presence of malicious code,

complicates the digital investigation process, and disrupts traditional digital
investigation techniques. Thus, a novel, highly automated forensics analysis technique

to allow digital investigators to cope with a growing number of malware threats and

discover traces of intrusions is required.

One of the most important attack vectors used by malware intrusions are network

vulnerabilities. Malware intrusions exploit network vulnerabilities to propagate over

hosts, and from one network to another, which makes the process of determining the

source of the attack is very difficult.

In this paper, a novel methodology for post-mortem analysis of hosts infected by

malware is proposed in order to discover the propagation path of a malware attack.
The post-mortem analysis of infected hosts is based on the detection of malware

traces using event time bounding methods described by Gladyshev and Patel in [2].

Time bounding is used to derive an overall picture of host infection throughout the

network. Malware infection times are determined based on the detection of malware

traces in host systems using comparative methods described by Zhu, et al. [3] to

reconstruct past digital events. This method allows the use of system snapshot data –

for example, from Microsoft Windows System Restore Points [4] – to derive more

information about past events than could be found with single-state analysis. After

event information has been extracted, event time information, and specifically the

initial time of infection, is correlated to derive the attack path history of the malware

intrusion, as well as the intrusion source host or network of the attack. Consequently,

the output of the methodology is a graph stating the malware intrusion attack path and
propagation flow, which is used to infer the source host or network of the malware

intrusion.

1.1 Contribution

The contribution of this paper is highlighted as follows:

A. A method is proposed for the identification of malware intrusion infection

times based on past system states derived from Windows System Restore

points.

B. A method to correlate multi-host malware infection times is used to infer the

malware propagation path.

C. Timeline analysis of malware intrusion and malware propagation that results

determination of the malware entry point.

1.2 Paper Organization

The paper is organized as follows: Section two gives a brief description of Microsoft

Windows System Restore points and registry snapshots. Section three describes the

malware infection time inference process using event time bounding, and the process

of using the timeline correlation of the infected hosts to derive the malware intrusion

attack path and propagation flow from one host to another or from one network to

another. Section four provides a practical case study on Microsoft Windows systems,

and how to use system restore points to infer malware intrusion infection times.

Finally, section five concludes the paper and examines future work.

2 Windows Systems Restore Points

Windows system restore points are a valuable source of previous system state

information in Windows systems, as described in [3] [5-8]. The Windows system

restore process [9] monitors the operating system changes and saves the operating

system’s state (a current copy of Windows registry hives and other monitored files) as

a restore point in a consecutive set of system states. If a system later has issues, the

user can roll back the system to a previous stable state using the data from a restore

point.

The Windows restore point backup process is triggered by the Windows operating

system Kernel under the following circumstances:

 Every 24 hours

 When installing unsigned drivers

 When installing systems updates using automatic updates

 When start restoration point process

 Before program installation

 Manual creation a of restore point by the system user.

As described, the system restore process was designed to help the operating system

recover from unpredictable events that may cause disruption of the operating system

while performing critical processes such as installation of software programs or

installation of unsigned device driver, etc.

Windows restore point state contains different items; most notably registry hives,

but also other files, such as executable files and library files – also known as DLLs.

These files are copied to the restore point folder upon creation, and are renamed with
a unique name. A log file called change.log, contains both original name and the

descriptor name for each file in the restore point. The files copied into the restore

point snapshot are identified by an xml directive file located in

%System32%\Restore\Filelist.xml, which specifies the files being

monitored by the operating system, and what files are included in the restore point
backup process [10]. The mentioned files include executable files, DLLs, Windows

device driver’s files, and other extensions. In addition, a snapshot of Windows

registry hives containing the current configuration of the Windows operating system

and the users’ settings are copied into the restore point folder. The monitored files’

metadata – including last modification, last accessed and last created times, known as

MAC times – are not altered during the restore point creation process, which allows

for a more accurate creation of a timeline for objects included in restore point folders.

 Analysis of registry snapshots over consecutive restore point states can be a

valuable source for tracing malware configurations in infected hosts. Registry

snapshots comparison can show system changes, installation of new hardware and/or

software, altering of current software settings, installing new services, changes in a

program’s configuration over time, network configurations changes, and changes to
firewall and security settings. Digital investigators could infer a considerable amount

of information by comparing various registry snapshots over certain time-span to

determine when a malware intrusion first infected the system, and what changes and

configurations were the results of such an infection, as shown in [3] and [6].

Generally, installation of malware executables in the infected host also copies the

malicious executable into the restore point folders, as most of malware code is

developed in PE formats [11] such as executables and Windows drivers that are

registered in the xml monitoring file (Filelist.xml). In addition, the majority of

malware places their configuration in the Windows registry, which makes the process

of registry examination inevitable.

Further, malware employs different techniques to maintain persistence, such as

installing the malicious code as a system service or device driver, loading the

malicious code at startup, and sometimes adding the settings and configuration of the

malware to the registry hives. An example of the keys used by the malware include

<run>, <run once>, <Service>, <Browser Helper Objects> and

<Internet Settings> keys. This ensures persistence of the malicious code

after the host has powered down.

3 Malware Infection Timeline Analysis

Forensic examination of a collection of saved states presented in Windows restore

points is an important part of analyzing malware. The restore point investigation

provides more information pertaining to the malware’s activities in the infected host.

This section describes a method for timeline analysis of an infected host using restore

point information. The proposed method compares consecutive registry snapshot data

to extract traces related to the infection, and to determine when the initial point of

infection occurred.

When presented with a collection of Windows restore points, it is possible to identify

a time-span in which the host was initially infected. When the malware is executed,
traces of the execution may be created in the Windows registry. After the initial

infection, when a restore point is created, a copy of the registry hive containing the

traces of malware will be copied into the restore point folder. At a minimum,

evidence of the malware execution process may be found within the Windows

registry’s ShellBag keys [12].

By examining past registry snapshots and determining when the malware-related
traces first appeared, the host infection time can be determined. The resulting

infection time will be used later to assist in the process of determining the malware

intrusion infection path, how the malware propagated across the network, and the

source of the malware intrusion.

Figure 1: Bounding initial infection times within an infected host based on the

appearance of malware traces across consecutive snapshots

The proposed infection time identification process is mainly dependent on two main

procedures. The first procedure targeted the malware trace evidence present in

registry keys, while the second procedure focuses on the comparative method of the

evidence timestamps to identify the first time the malware was introduced to the

infected system (initial infection time).
As shown in figure 1, the initial infection time is based on comparing the malware

trace timestamps in consecutive registry snapshots to discover the first infection

timestamp. The malware traces’ timestamps are bound by two times denoted as Tmin

and Tmax such that Tmin describes the time when investigation process was started and

Tmax describes the first observed timestamp of malware traces. The malware infection

period is defined as: ∆ T = Tmax - Tmin.

The infection period is determined by iterating over each observed malware trace Em

in every restore point. The procedure compares the timestamp of Em in both restore

points RPx and RPx-1 until no trace timestamp is discovered. The last discovered Em is

then the initial time of infection.

One limitation with this method is single last-modified timestamp associated with

Windows Registry keys. Malware trace evidence timestamps, such as malware
service load times in the service configuration keys, will only include the last

modified time for malware-related keys in the registry. Hence, if the malware re-

loaded the service many times, the only timestamp that is available will be the most

recent execution timestamp.

To overcome the aforementioned limitation, a time slack period, as defined in [12], is

created from the first observed malware trace timestamp to the restore point creation

timestamp to avoid multi-access problem of the evidence keys. In practice, the time

slack that denoted as infection span time will be limited to a maximum 24 hours in the

worst-case scenario.

3.1 Correlation of Infection Times

The malware intrusion attack path is a graph-based representation for paths that are

likely to be used by malware to infect other hosts or networks. From a security

prospective, malware intrusion attack path construction allows security analysts to

assess the vulnerabilities of connected hosts and networks, as described in [13-15],

and also to understand how vulnerabilities in an individual host can contribute to
overall network vulnerability. In general, an attack graph’s function is defensive since

it used to assess the deployment scheme of Intrusion Detection Systems (IDS) and

firewalls. In digital investigation, constructing malware attack paths enables digital

investigators to identify the sources of malware-related attacks and attack activities in

hosts and the network.

The proposed method for constructing malware intrusion attack paths is based on

the correlation of the infection times derived from various infected hosts. A

relationship between hosts is mandatory for the malware to propagate. The host

relationships are presented in a connectivity meta-table. The hosts are connected

together in the network based on the design of network topology. The connectivity

meta-table is a representation of how each host is reachable from each other host, and

over which ports and services. If the connectivity preconditions between the infected
and non-infected hosts are satisfied, the infection probability factor is set to one;

otherwise it is set to zero.

Correlating host infection times is a process to determine the probability that host A

has infected host B based on infection times of both A and B, while considering the

connectivity constrains between A and B.

Figure 2: Identified possible host infection time-spans for 5 related hosts

As shown in figure 2, the probability that a certain host, X, is infected from another
host is governed by Tmax of X and Tmax of the other host. Thus, if Tmax(x) > Tmax(x+1)

then, P (Tmax(x)) infected from Tmax(x+1) = one otherwise zero where value one is

most likely to be infected and zero most likely is not infected.

The process of correlating the host infection times to other hosts after satisfying the

connectivity conditions and constrains is continued for all hosts. The process results

in a graph stating the infection propagation path from one host to another, as well as

the entry point of the malware. Re-running the process over multiple networks will

clearly show how malware has propagated from one network to another, and what

network is the source of attack.

4 Case Study

To demonstrate how the aforementioned infection time bounding methodology is

applied, a practical case study of a malicious code infection is presented. The case

involves dynamic analysis malware propagation over multiple hosts and networks. A

preliminary setup for malware test environments includes installation of nine

Windows XP hosts in a virtual machines environment. The virtual machines are

separated in three networks, and connected via a simulated routing service. 21 test

cases of malicious worm infections are executed by infecting a machine from network
A and observing the malware propagation over network A hosts, then from network A

to both network B and C. The malware samples collected from many sources include

malware research sites and honeynets [16] [17]. In each virtual machine, a clean

installation of Microsoft Windows XP SP3 was installed and operated in normal user

mode for five days. A number of 7 to 11 restore points were created in first five days

in each virtual machine due to different software application installations, and a

default restore point creation every 24 hours. Malware was introduced into the first

virtual machine; after, the infected host was left for three days to allow the malware to

propagate to other hosts and networks. Three days after the first host was infected,

forensic images of all infected virtual machines were taken using Access Data’s

Forensic Tool Kit (FTK) software [18]. A Python script was developed to extract
restore point folders and examine the extracted registry hive snapshots for malware

evidences traces. The developed script outputs a timeline of malware propagation

based on the information extracted from the registry snapshots. An xml file,

containing a list of keys commonly used by malware, was used to direct the malware

trace search process. The keys include, but are not limited to, auto run keys, services

keys, ShellBag keys, network connection and network setting keys, Internet history,

browser helper objects and firewall settings.

The search process is designed to search for traces of particular malware in the

specified keys within all restore points. If traces are found, the trace timestamps are

compared to other restore points to identify the first time the system was infected with

the malware. Once the operation is complete for all traces in the infected host, an xml

file with the host’s infection time information is generated. The resulting infection
timeline for each host is shown in Figure 3 and 4.

After generation of the infection time information for all hosts, a different Python

script correlates the information presented in the xml files, and produces a timeline of

the malware propagation path, showing how and when the malware propagated from

one network to another and the most likely source of the intrusion.

As shown in Figure 3, the timeline of the malware intrusion propagation and the

attack path, clearly show that the malware intrusion initially started from Host one,

then propagated to the other hosts within the three days. Malware propagation

between different networks will only be from the hosts that have connectivity

privileges between networks. As shown in Figure 4, only the infection source hosts

have access to more than one network, thus, infection in the new network was found

to propagate from these hosts.

Figure 3: Malware infection and propagation times in nine hosts based on the

detection of common malware traces within the Windows registry

 Figure 4: Malicious code propagation determined by correlation of initial host

infection times across three networks where the border devices were found to be the

infection sources

Digital investigation of the host event logs show the network connections used by the

malware intrusion to connect to other hosts, forming a communication map. More

details about the malware network connection and propagation could be elicited from

network firewall and IDS logs; however, in these experiments we have used only host

logs. In this case, the malware infection started from Host one on network A. Host

one has access to both networks A and B, and was found to infect hosts two, three and

four in network A. The intrusion also propagated from Host one to Host five on
network B and then the process continued to all hosts in all networks.

5 Conclusion

This work gave a brief introduction into Microsoft Windows system restore points,

and reiterated the value of registry snapshot analysis. A method to infer malware

infection times from snapshot data has been given. Infection time information for
multiple hosts can then be correlated to derive the malware intrusion attack paths

from one host to another, or from one network to another. A case study was then

given that shows the practicality of the described method. Overall, the described

method gives good results in determining the initial infection time of a host (within 24

hours), which could provide valuable information when attempting to determine

current network vulnerabilities or the vector and intent of the initial intrusion. Our in

progress work includes improvements in the procedures of traces extraction from

Windows restore point to better understand the actions and behavior of malicious

code in the infected environment.

References

1. Symantec. (2010). Internet Security Threat Report (Vol. 16).

2. Gladyshev, P. and Patel, A. (2005). Formalizing Event Time Bounding in
Digital Investigations. International Journal of Digital Evidence, 4(2).

3. Zhu, Y., J. James and P. Gladyshev. (2009). A comparative methodology for

the reconstruction of digital events using Windows Restore Points. Paper

presented at the Digital Investigation Conference.

4. Microsoft. (2010). About System Restore, Retrieved 2011, from

http://msdn.microsoft.com/en-us/library/aa378724(v=vs.85).aspx

5. K, Harms. (2006). Forensic analysis of System Restore points in Microsoft

Windows XP. Digital Investigation 3, 151-158.

6. Carvey, H. (2009). Windows Forensic Analysis DVD ToolKit.

7. Kahvedzic, D. and Kechadi, T. (2008). Extraction of User Activity through

Comparison of Windows Restore Points. Citeseer.

8. Kahvedzic, D. and T. Kechadi. (2009). On the persistence of deleted
windows registry data structures. Paper presented at the ACM symposium

on Applied Computing, Honolulu, Hawaii.

9. TechNet, Microsoft. (2002). Windows XP System Restore, 2011, from

http://technet.microsoft.com/en-us/library/bb490854.aspx

10. Microsoft. (2010). Monitored File Name Extensions, Retrieved 2011, from

http://msdn.microsoft.com/en-us/library/aa378870(v=vs.85).aspx

11. Microsoft. (2011). Microsoft PE and COFF Specification, Retrieved 2011,

from http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx

12. Zhu, Y. and P. Gladyshev,. (2009). Temporal Analysis of Windows MRU

registry Keys. Advances in Digital Forensics 306, 83-93.
13. Ammann, P. and Wijesekera, D. and Kaushik, S. (2002). Scalable, graph-

based network vulnerability analysis. Paper presented at the 9th ACM

conference on Computer and communications security, Washington, DC,

USA.

14. Ingols, K., Lippmann, R., and Piwowarski, K. (2006). Practical Attack

Graph Generation for Network Defense. Paper presented at the Annual

Computer Security Applications Conference

15. Sheyner, O., Haines, J., Jha, S., and Lippmann, R. (2002). Automated

Generation and Analysis of Attack Graphs. Paper presented at the IEEE

Symposium on Security and Privacy, Los Alamitos, CA, USA.

16. http://www.offensivecomputing.net/
17. http://www.nepenthespharm.com/
18. AccessData (2010). "Forensic Toolkit." Retrieved 4 Nov., 2010, from

http://www.accessdata.com/forensictoolkit.html.

http://www.accessdata.com/forensictoolkit.html

