

D. Balzarotti, S. Stolfo, and M. Cova (Eds.): RAID 2012, LNCS 7462, pp. 388–389, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards Automated Forensic Event Reconstruction
of Malicious Code (Poster Abstract)

Ahmed F. Shosha, Joshua I. James, Chen-Ching Liu, and Pavel Gladyshev

University College Dublin, Ireland
Ahmed.Shosha@ucdconnect.ie,

{Joshua.James,Liu,Pavel.Gladyshev}@ucd.ie

Abstract. A call for formalizing digital forensic investigations has been
proposed by academics and practitioners alike [1, 2]. Many currently proposed
methods of malware analysis for forensic investigation purposes, however, are
derived based on the investigators’ practical experience. This paper presents a
formal approach for reconstructing the activities of a malicious executable
found in a victim’s system during a post-mortem analysis. The behavior of a
suspect executable is modeled as a finite state automaton where each state
represents behavior that results in an observable modification to the victim’s
system. The derived model of the malicious code allows for accurate reasoning
and deduction of the occurrence of malicious activities even when anti-forensic
methods are employed to disrupt the investigation process.

Keywords: Formal Models, Event Reconstruction, Model Checking and Auto-
mated Static Malware Analysis.

Introduction: This work introduces a formal model for automated malware investiga-
tion based on the modeling of malicious executables. In the proposed approach, mali-
cious code is analyzed using automated static analysis methods [3-5]. The malicious
code’s control flow graph is then formally modeled as a finite state automaton (FSA).
The formalized model of the malicious code behavior is processed by an extension of
the event reconstruction algorithms proposed in [2, 6], which computes the set of all
possible explanations for the state of the victim’s system in the context of the mali-
cious code where the observed state of the victim’s system and malware trace creation
states intersect. The result is a reduced state-space where malicious actions agree with
the observed state of the system. Furthermore, the modeled FSA allows for the infe-
rence of the occurrence of actions that do not leave an observable trace.

Modeling Investigated Malicious Code: Malicious executable IE is formally defined
as a sequence of instructionsܫۃଵ, ଶܫ … . The behavior of IE is represented in a finite .ۄ௡ܫ
state automata M = (Q, ∑, δ, q), where Q is a finite set of all possible instructions in
IE and δ represents transition function that determines the next instruction Im for every
possible combination of event and instruction state Iq, such that, δ: ∑ ൈ Q→Q. A
transition is the process of instruction execution. An execution path p=൫ݏ଴, ଵݏ … ௤൯ isݏ
a run of finite computations consisting of a sequence of instructions that lead executa-
ble IE to the final state q.

 Towards Automated Forensic Event Reconstruction of Malicious Code 389

Malicious Events Reconstruction: is the process of determining all possible execu-
tion paths that are consistent with observable evidence. In this approach, we extend
and improve a formal model for automated reasoning of evidential statements and
reconstruction of digital events proposed in [2]. The extended formal model is based
on back-tracing execution paths that hold the observation Ox. The proposed back-
tracing technique over all possible execution paths is based on the finite
computation ௝ܿ ൌ ۃ ௝ܿఙ, where, ௝ܿఙ ,ۄ௝௤ܫ א ௝௤ܫ is an event and ߑ Q is a state. Any א
two instructions ܫ௞and ܫ௞ିଵare related via the transition function for a given instruc-
tion ܫ௝௤ ൌ ൫ܿ௞ିଵఙ ߜ , ௞ିଵ௤ܫ ൯. The notation of back-tracing an execution path is formalized
in Equation 1, where ߰ିଵ traces back all finite computations representing the execu-
tion paths in the malicious executable IE.

߰ିଵሺܳሻ ൌ ራ ߰ିଵሺܫሻ׊ூאொ ሺ1ሻ ܱ ൌ ሺܲ, ݉݅݊, ,ݐ݌݋ ֜ ߤ ܨܣ ܩܣ ௖ሻ ሺ2ሻݎ݌ ߰ିଵ ሺ݌ሻ ሺ3ሻ

Formalizing Malicious Code Observations: Evidence is described as an observable
property, O, of a victim’s system that denotes the execution of a malicious payload.
The formalization of an observation is defined in Equation 2, where P is a set of all
instructions in IE that have the observed property pr. min and opt are positive integers
specifying the duration of the observation and ݎ݌௖ is the set of characteristics of the
observed property pr. An execution path p is said to contribute to O if a set of se-
quence of instructions in p possesses the observed property pr.

Observation Consistency Checking: Anti-forensic techniques are formally encoded in a
CTL specification model [7] μ. Using the proposed model checking algorithm, the model
of a suspect executable IE is checked against the encoded techniques μ in the context of
malicious code execution to identify tampered observations. The model checking algo-
rithm takes a formula μ and executable model IE and verifies all states s א where μ ܧܫ
holds. The notation of the model checking algorithm is formalized in Equation 3, where
A is a quantifier over all paths p that contribute to the observation o, and G/F are a path
specific quantifiers that check if μ holds over all states s and possess o.

References

1. Stephenson, P.: Using a Formalized Approach to Digital Investigation. In: Computer Fraud
& Security (2003)

2. Gladyshev, P., Patel, A.: Finite state machine approach to digital event reconstruction. Digi-
tal Investigation (2004)

3. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious patterns. In:
USENIX Security Symposium (2003)

4. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behavior. In:
ESEC-FSE (2007)

5. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting Malicious Code by Model
Checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174–187.
Springer, Heidelberg (2005)

6. James, J., et al.: Analysis of Evidence Using Formal Event Reconstruction. Digital Foren-
sics and Cyber Crime (2010)

7. Emerson, E.A.: Temporal and modal logic. In: van Jan, L. (ed.) Handbook of Theoretical
Computer Science, vol. B (1990)

